Mailing List flyrotary@lancaironline.net Message #51992
From: ben haas <stol83001@live.com>
Subject: RE: [FlyRotary] Radiator Math
Date: Wed, 1 Sep 2010 08:14:56 -0600
To: <flyrotary@lancaironline.net>
Most cooling issues are outlet related, not inlet sizing......
 
Think of air as a chain.. You can pull it alot easier that you can push it.
 
Your set up is even more critical as the thick core can only breath so much through its dense fins. You need a large pressure drop on the discharge side to draw air through it...
 
IMHO

Ben Haas
www.haaspowerair.com



 

To: flyrotary@lancaironline.net
From: candtmallory@embarqmail.com
Date: Tue, 31 Aug 2010 22:39:52 -0400
Subject: [FlyRotary] Radiator Math

Let me start with my old radiator.  The core is 8 x 15 x 5.  It is a double pass radiator.  My inlet is 36 sq in.  I think the radiator is just too thick for good enough air flow at the speeds we are climbing and cruising, not to mention ground ops.

 

So I geeked out, and did the math that I have found to figure out the correct size.  Those who have done this before, please check my math.

 

I found the following requirements/suggestions during my research:

 

1.2 sq in of face per cubic in of displacement

                1.2*3*39.9 = 143.64 sq in face

2.1 cubic in per HP

                2.1*210 = 441 cubic in

2.48 cubic in per HP

                2.48*210=521 cubic in

Inlet should be 15% of face

                36 sq in inlet = 240 sq in face

Since my oil cooler is on the side, and works fine, I get to use the entire bottom of the engine for the radiator.  This gives me a max space of 16 x 18 for 288 sq in face.  Using a 2.5 in thick core 288*2.5 = 720 cubic in of radiator.  This should do the trick.  I could even make it a little smaller to ensure easy clearance.  My inlet may be a little smaller than the radiator can handle, but I don’t see how it can hurt to have a slightly larger radiator than the inlet can handle.

 

Along the way I found a reference that said the heat from 13.7 HP is shed for every 1*C temp differential for every sq ft of intake.  Assume 200F(93C) coolant and a hot day, 90F(30C) I get:

                (13.7/144) inlet *63 = 210  so inlet = 35 sq in

So up to now I’m feeling pretty good about the math, but please let me know if I messed it up.

 

I will have to use the wedge shaped duct to move the air through the radiator.  So to figure out the height of the duct from the radiator, I again used 15% of the facial area, then divided by the width.

                16 x 18 x 15% = 43.2

                43.2 / 16 = 2.7

So Do I really make the front of the wedge only 2.7 inches tall?  This seems pretty small.  It would result in a really long, thin triangle.  I have a max of 6.5 inches available, so can easily make it bigger.

 

Thanks for the help.

 

Chris

Subscribe (FEED) Subscribe (DIGEST) Subscribe (INDEX) Unsubscribe Mail to Listmaster