X-Virus-Scanned: clean according to Sophos on Logan.com Return-Path: Sender: To: lml@lancaironline.net Date: Mon, 05 May 2014 07:11:47 -0400 Message-ID: X-Original-Return-Path: Received: from mail-pd0-f181.google.com ([209.85.192.181] verified) by logan.com (CommuniGate Pro SMTP 6.0.9e) with ESMTPS id 6856830 for lml@lancaironline.net; Fri, 02 May 2014 21:25:08 -0400 Received-SPF: pass receiver=logan.com; client-ip=209.85.192.181; envelope-from=frederickemoreno@gmail.com Received: by mail-pd0-f181.google.com with SMTP id w10so4106677pde.12 for ; Fri, 02 May 2014 18:24:34 -0700 (PDT) X-Received: by 10.66.66.66 with SMTP id d2mr41219523pat.36.1399080273992; Fri, 02 May 2014 18:24:33 -0700 (PDT) X-Original-Return-Path: Received: from User-PC (CPE-121-221-11-248.lns1.wel.bigpond.net.au. [121.221.11.248]) by mx.google.com with ESMTPSA id qh2sm4903645pab.13.2014.05.02.18.24.31 for (version=TLSv1.2 cipher=ECDHE-RSA-AES128-SHA bits=128/128); Fri, 02 May 2014 18:24:33 -0700 (PDT) MIME-Version: 1.0 X-Original-Message-Id: <5364454A.0000AA.04888@USER-PC> X-Original-Date: Sat, 3 May 2014 09:24:27 +0800 Content-Type: Multipart/related; charset="iso-8859-1"; type="multipart/alternative"; boundary="------------Boundary-00=_Q85Z9EHAMY5000000000" X-Mailer: IncrediMail (6605288) From: "frederickemoreno@gmail.com" X-FID: FLAVOR00-NONE-0000-0000-000000000000 X-Priority: 3 X-Original-To: "Lancair Mail (lml@lancaironline.net)" Subject: Legacy White Paper - "Just the facts please." --------------Boundary-00=_Q85Z9EHAMY5000000000 Content-Type: Multipart/Alternative; boundary="------------Boundary-00=_Q85Z4OLBH89000000000" --------------Boundary-00=_Q85Z4OLBH89000000000 Content-Type: Text/Plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable As Jack Webb said in Dragnet again and again: "Just the facts please."=0D =0D John Smith did an analysis of the canopy accident record and found: =0D "The figure I derived from historical data is actually around "3 in 100,0= 00 take-offs." =0D If you shift the zeros around this is 30 per million take offs. =0D The general standard for a single point failure leading to accident is generally accepted as 1 per million. =0D With the actual incidence being 30 times greater than the standard, the evidence shouts for corrective action. A warning light is the WEAKEST fix= =2E=20 We can do better. We should.=0D Facts are such stubborn things. =0D Fred Moreno --------------Boundary-00=_Q85Z4OLBH89000000000 Content-Type: Text/HTML; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable
As Jack Webb said in Dragnet again and again: "Just the facts please= =2E"
 
John Smith did an analysis of the canopy accident record and found:&= nbsp;

"The figure I derived from historical data is actually = around "3 in 100,000 take-offs."

If you shift the zeros around this is 30 per million ta= ke offs. 

The general standard for a single point failure leading= to accident is generally accepted as 1 per million.

With the actual incidence being 30 times greater t= han the standard, the evidence shouts for corrective action. A warning li= ght is the WEAKEST fix.  We can do better.  We should.

Facts are such stubborn things.

Fred Moreno

--------------Boundary-00=_Q85Z4OLBH89000000000-- --------------Boundary-00=_Q85Z9EHAMY5000000000 Content-Type: image/png; name="SENDER_EMAILfrederickemoreno@gmail@@com.png" Content-Transfer-Encoding: base64 Content-ID: iVBORw0KGgoAAAANSUhEUgAAADIAAAAyCAYAAAAeP4ixAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAHJtJREFU aEM9mneYnNWV5j8JAzOzZoiSkIQiCgRhwCIahxkMGHsAD8H2DM4TzBqbpNQ555xTdc5V1dXVFbq6 q7q7qjpU56BWKwcMO7v/7J/7eGfWaxDv/m6JWem5T32p6zvvOe8557331ibry39jM6u65eZbreub /2xt/vNN1vVbPreufy7r5ltusrbdfpt161/ealmff2Fdt2T9xS2brb+4+S+tzz/7zPq/n/2Z8Zml 619YX7n1FktffGH9+2ey9Kf/sL64+Sbrf/+v/2P9ib/79z/+h/U///hHa9OfrlvXb/5K/Ls+++Iz i7+wPt/0Beebrev63Lpp001Y9Dn/LWuzNltf2czzX3zFunWzrD/dJGvTdcvatEnc3WRt3rzJev+X P9n0nxgsx8i8POOLckUX5ZtckH96Sb6pRT6XFZxZ0lhsSWeuXtHauQtaO39JZ65c0eVr13T100+0 cfmKls5f0PIF7l25pI0Ll7R09rzWL17U8vnz8k/NqHdkWq3uUTX0DKu226W6TobNrfJmp8paBlTa 3Kvi5j4V2/pU0tqp4qY+ldr6VdTcrwrulbd2q7KlVzU8U8a9ipYerneruJXn23oMKsvq9E2p0z8t V2BajtCM7GOz8kzMyB2dlDsS02BkVr7wrCKLS5qeXVN0bkVTiwuaWTut81cua2HltGZXVhXjM7a+ obnT65peXtNpQC+eOStPeFrd/jE19Y2ossOl8na7StswusmhEpsd47uVb+tRcUO/Suo7VFTfrYKG LuXXtyuvkXMbIBklXCtqbFVhQzt/16Hixk4V8rdlTdxr7ZXV4Y6oYyiqLu+kenxR9fsicgSm5Bid AlRUA6OTGhybxqApucOTGp7keDKGp2c1EVtUZBZgc3OKza9oduk0IDYUW1pTeJ57M8tyjQPEO66a Lh8AXCrBy4VN/Squ71d+XZey67pViNG5td3KretQXm2bimq7lFfTxjHG1wOqrkUFjbY4wLIanq0H RF2bCurbVNHYoxJAWS0Dk2oeCsvmDgJoTG1DE2r3jKnXNwGwsPqGI3IOTwIuqsHQ9JcjJh9RGwnH NDw1qZHJeY3MLCg8PaPx2KxC0wvyRac0Ep0HfFStAyOq6hxQSQtA8Hwmxmfg+Zw6W9zwnNoO5dZ0 KKe6VVkAyOQ4vYrz+hYVc15YzTP1jcqpuXE/m+fza4kYESwGTD5RstpdE2p0jcs2EFQLw+YyYEbU AbAueN3pHZMLj/b5o7IHwrIHiVJwQl48PRiKaogoeQEVmJgjz8LyjM3IF5mTHzoaEC4i2mEfVgVA ClvsGGS83U4k8Gx1yw3Dq9sxvlkZla3KqGpRWkUroLjHyK7sjAPM5Zn0SptyuJdbx7O1LTihhejw LIOIRNTcH1ITXmt2htTmDKp9cAQwY+omMl1DQfV7Q+oJTMhJVJwjjNCknGNQDVDOkUn1D4+rPxDh b4Z5Jsx1cs5cD0yqhe8q7XSqsNmugro+xg0KZdV0KqOsRakVAClvA0CT0jnOKGlSRkWLUirrlQmw ZJ7J5TwTEBmMdK5lVzUqu8YGuAYi0wLQZlm2gbE4rZrdgOgPqN7lUx/HJiIdg2H4HZJ9dFzO0aAC RMEzTv4whojCIKD6/RPqhI4drgDOCDL8anUEcM6oqrs8qmgdVBGVJq+xP258fjV50dCEt9uVBX3S q5oxGkClLUovtSmllHNGJuepFRhfYuNes1J5Jq2yWTnlPAegTI4LGRnldQACSKcfr7lCeC6oVoaJ TOtASM2DATw9qbHZWQ2ORjRkKEMF8plKNjqjAQqCfThMFEbV7BpVVa+XPPCoklHR5qFkDlJaXfES Wtxoh8d9yiShDZjc6s54DmRUQCmikFbWzGhUallrHEQSxicSmcT4Z71SyhuUznlKca3SixuVxnkG IDMryRuomG2A9FC1Wp2janQMq9k+Aig8Cr1auOaemFIgitHjM+RELF7BekejUC6sTk9QnW4o6Aqq sX9Ypa3OeF8oaOxTDiOXipRXg/drewh/pwrIi0yMzyRxs6pIXs5TysiVsjaMx9vFRAPDkzA4zYDB 4OQijgsaAdCg5BI+S82wKauwUenlNUoHfB7XMqubSHY3Fcs5rBbHqJqcIwyv6uw+NQOs1TWs0dgN EA5DI5K+ExBtbqhj9/OsXw12ryrbB2lQ9IhmB57vp5TCf1NdqvA8Xk4ynjeJW1ZPIsPzWkY1A/6n lOF1Y2gRn4VNSips0ImiRiUU1imhpAZAtUourFZGYT336/VRRo6OpWfqWGo6gOuJbB2RaZDV6x/H wxNqGzBRofs6/Krr9VPFhinBITnJgS7fKDlAtOB+K2Abez2q7/aoptuvyrZBldtcdFkH0ehXXl1v nEKmhGaRpKcq4Hc5noQ+BlQ6HDf5kQ4t0iuJRkkLxjYoEePTSwFS0qC0IkBgfFoRAAtqAWDA1BDZ Jp1IT1NiRpZOpWUrDaBppQDBQVavj3JLjrQzGohMLTRpdvjw/hhJTO4QnaY+PN9HIejzqLrTrRpG VbtDRa12lZDIRVSk3PoevAxlSOYUACSW30jYU+VwvJDqA2VMQicSAVOdcqoAA62yi0xekNAmKgUA Mcbj+WQApRTU60ReuRKKqnUyr4brRTqenqrjmTk8W40TAF98A4xlgxrNhlr9XjU6faq3e0j8YUqw oZtf9V1Qp9ut0g53vAJVxhPYTseFQpTSfJpWbhVJDP9TMS61whjcCEWIApxPzq/HuHolVHBuruH1 1PJWngFA8Q3Dk+KRqFMyYJKIRjL0SizH+JLa+DMJRCOjtEzJWbn6KDVViTmZSuY8yYDhuxPJJ6u6 z62Gfrzu8JIr0AvuNxtwAKtH4FVAGeN5I+TykAK5ca+TpFVdJK+p+dCjDDpwLZGETcSIlDyAYFBa SbNOwfWTBVDFeL20Fs8Djpcnc/94fgWer8EYnsdgU5WSi2qUSIKnU62SigBiaJXXoMziEiXmpSoj M1OnsjOVlAewwiolme/g06rpHFJDr1v1PQzqfhPKtBZdVNtP8ra4EW09aJqeeCfOhtMZcD4d2qTQ mFJ4mTEsAQokFjN4cXJ+rU4wEhinGMfjhtTh8Wo8brgPCKKUkFcLwCqMq+IY+sQBV+OIcv6O5/N4 vqCSzxocVgWQYqVnZemHr74JvdJ0oqA8/rcnCytxQKWsyg543zFA0jpUhffLOvoB4kLkIbGJgimj WXWd8ZKZTgdOJYyJJG5qaQMUsVGF8KRpZkgHU1WMgadyMSzf8LocjtfoRHa1jnN8HCOP51VyrVIn uXYMbyZlVenDHM75m+P5lTqejYE5JXxHjY7nVsVp+t7xj/TTn/1U//TOP+mff/MbfZSegTOqiVhl HKyJpJVjM5IZgdbchYrsIgp9qkL7F3NcGlenUKIc7hc3K8vUckpkYhkhN00KYGlUpDST2NR0k5yJ GHc8uzRu+Ae5FRiFkZnF+ii3VB/mFegD7r2fVa5jjPczy3Qio4z7pTqWWcJxiT7g2rEsc61Ix3Lz oDHVqqZGhUVFSs0tUlJOtj7MzABgBYluKlsFFAZIbly0wfu6VtRkO5rfTFh64lrfaJgMpEEGXkk1 9T6erOQAiZtFfmShRjORGBk8l1ZJwvLFCfD1RDZezypE1tB3+pxx2jb1DKnH5VZqfpEOHnpAu/cd 1radO/TEt7+j9xMSoVCx3s0u0XtUpPfS8/F6vvLpEcX19SqpracHlcaBnIRW6XkVSBVD6yoqXwWO pvxm1GJIDcILzZ/DRKbA1qmiuqa4ssxG82dV1yuLZP6IP04haVMr+FLUaAE6Jy7YalvRT6bhNcUb XlN3n77/5o/0taPPKq+sRnsfeEbbDn5Nhw49qILqWhXhgCanU/0eryZnV/V+YjYUK9XvU9L03Le/ rfsP7AfoQR157DE99MhRPfzIEe176GH96Gdv6/eJSfrX37+rjGKiUE5E6O5ZgMgiV618GlQ2Xs1D 1xt5XNCAvm9ifoDczjHXUJkJhC8hv0yn8oqQFkQDAPmAz6tvij+TZSQ5arWqplKv/cOPdejhZ5Re VKJdDz+nv/vpz/Xqj3+h1JJiPFiOFCmFhtUUjnIUQDWTqHrKvEvtjG6XR7VNDUj1Sn2YkqoXX/uB nv/eS/rmd/9GL73+in773rt65/gx7T58WAceflAHDzyovQcP6sW/e02WQWQEWA5tPhu+51ahZaoa VBSPEsldUk4ilpKcxTqekYu4q+HlqFDuFRHFPEYueZRfW6evP/O3euJbz+uNN35CFCu18+AD+uWv AZGXT+LnKZPvSqOMJhQWwu1iHFREJYMyNLq0AmiTk6cP0tJ08lSSfv67d3HAj/S91/9er7z5hl7+ wct69tlv6Oknn4t/d3ZVLbZW8/5GFdLxLaMqDddSSeC0ijrChhgjJ9LplmnQKAdwqVSTEyn5ei8l XQk0pXwMLzQRMZGpo4cUliAOq4liLWEu528IfVGhUgsKlUTCJgMiKTdHidlZfGYrISdHaRidmp+v hPR0vYPRb735lr7znef19ccfYzypR7/2NT3wyKPad/Cwth98VNv3PqIdDxxVVV0tasKm0vZ2FHaH KptbqbjMEA8ePqI0EqzMhgI13ZKqk0ouJFP306jRaQZkCfWe44/QOMfSMtVFAle3sBAAiKzSYuWQ 5FnQoZColPGi7BKqUUKC3v7Ht/Xd51/USy+9pBdfeJHxfX3zb5/X09/4ph5+9Clt27NPt9+7S7fd c5/u2LJHt23Zq9u27tZd2/fqju37deeOfRzfp0efeFZtvd2q6upSS2+vbL19svX1oQ0dzH2gpdMh 69U339ThI0f02NPP6NDRozryyCPad+iAnnz6KY0GQ6pqomoZ71Id8muYDxTk61gOpTMlQ2+89ZZ+ 8P2/16s/fF0/eOWH+tYrr+uhx1/QXfcf1T2Hn9Y9+49q64Gj2rbvCW3Z93XtPPAUxj2Awft12917 9NW7d+qrd2zn+F7dcfcu3X7PDoDt0R1bt+id376LwrCrGaNbMbh7wKWeIQ8a0IuYHWE+NMI0ekTu UabfIwFZqXTIhPgohMfVTEVtevmN17V7z17tv3+vdh/cr/0HD3B+v+6552794pe/0OVP/01H/+YF 7dj7JAYe1a5DzxL6J7Rt7+Px860GwP1PavuBb2jL/ie0nfPbdh0CyDd17/5ndNud9wFgm/7qr+/S V+/cBpBtunvHLn144qQ6XYPqdnvl9Pnk8A4zBxrV0Aiz01BQ3vC4vNGohs3CBosewalpBadjLHzM yDqWXaSE3AIoVQx/SymxlXHJcCq3hCQtowGSUJS5t3/9K4zdpx2H9mobJXLXgft13759unfnLu3i +ms/eVs//PnvtAPj733o29r74HPa+eC3tPOh72rrniN4/17dfudWjN6q2+/aptvv3gKdtmnL9p1q aGlBfbvUNWhUt1dej1+DftYKhkPyj45pJILR01MsFs4pOhNTmDW2qfl5TbDkFJxf0+jcsqzjdNRT ADlVUIB2MQAotVAnKR+pUGgUJqOoXKlFVXFNczw1V/v279P2+w5p96GHiNg+orVHO/fs0pa992nb 7j26fQsG37Odz+36L1t3wvOd+uttW3XHtm26c9sO+L9T9+7aoVdfe1W1bR2ydXertrVF3VCoa8jL GtuQXD4Pk7kRDYXG5GexcAzPj8+x5DS3qPDCgsYBM758VtGVDUXXNmSdzKeq0DGN8af4PEElSabD nsop5JoByT2od4pxIjtHP/7Vr/X0Cy8jp1O096Gn4PtOvfDyy/oGHfrAkcPa88BBAB6ivh/WveTa rt17icge3bN7t7YSubsAuv/BB7UfJ+zk836a3RFy9MHHHtfXn35Sz33nu3r5R2/qrZ/+o/7lgw90 /FSi8osLqZLVsrW1sUTlBmCIRZCoxibnNMbK5yQLg1YS/eFU/o3abj6TzShEI+WWxfVSApFJNkqT Wv+7hCS98vbP9L03f6zkVOYEBcX0D7orzS+rpBTNU6nHn3hKO+7bxRJOtQrL6uhHdVSzWiqcDRHa RPGgcba1smbbovrmdiZqHWogInVUoWYSugNDu70edfn9co1BrakphVjJjLAIMs9y7MLZc1o+e0FL Zza0yNrymWtXtXLpMsmO51PLK6FOGXOAEkowUoQ5QXIpEhp1mQioNDpxEhrpnY9O6l9++1/1D7/6 Dc0ri/yhmZWXIxXKVVBVSYNCgtCgqvBcbUeH6np64kY2UPMbMb66owfDMZpr1T18dnSqsauXhcEB ZqmD6nFTlXzDGgqOaSISZr15XrPzC4ouM5aWNAGlwkurnLO+zHrzAsDmz5xm0fyMrHq+uIH6XE5f qOFlDZ1dvKxTZYi1ooZGRgPHLJ4hKVKycpSQnK53k1OZo9SikGlMDS0s+7Sywt6h6u4e9fT2yx+k yhh+j4+zAhnWKJXGPxmRJ8qg8viioXgF8mC0LzQhf2RCwckpRaenWTOe1mRsXjOLi5pfZ4F89TQL 42taPrOuqbU1InJes+wILLMDsLB2TitmF4AdAKuPKuEa8cs9TKnzszhHkvX7XHIOetTuppIM4Cm8 ZapJa18vM8de1Gyv2gccrBVDAfcQC3luVG6/Opx2yiYe/bJUBqfh8cw0a2MzCsViilJlwhg4uUzV WV7RDF6eWlrU9NoqxrKiv7aiOY7nV/H28rKWDIiVFc1vbOD5Da2cO6vTFy/ozKVLWt04p1WoZcbK hYuyBkd4MQ3FNRyQg2H3+NSLMu2henQOuDU4OCi7j7rOPT8eHp2a0Oh0RBPT46zMszqPtwPRCbkw fig4ytrvGMtHVJqJiELU+TFGBHpE5mPaOLeBERd06dplXbpyUWsXz2sRzi+cPqNljJ9fWdYs3jdb FrHlVc3EtyvWtLhxVmuMFYw2NFo+R56cB8gZc3xWywC13ENuIgEQlkRdAYD4vRrA03aakd3nl8M/ TCkMxJuSPxLRKM0nMjeryfhYVAiPh2dmNc716FxMc/A4gpdj8DvGcZR7E5TNaSLx6f/4RP/tv/9B 1/5wVR9/+rEuXLmqs9euaAMDjcdnoU7MgFhd0TRbE5NLy5qZZ18GkIvrZzTD9QWALmL44nkAnD6t BSg3y99anhClzFCBBPNOTNM5ZzU0OasR+BoIR+iedM6pOQVm5zCaYXg8N08iLmhqYV7jNKroHCBW MHYB2phNIJrVNPemARuh4pjryxvruvCHa+x0Xdbljy/pk3/7lF2wy7oKmLUL5/E4m0Srxvil+GZS lD4RgYKTOCUKoDkiMwkdDeXm10lykn6KayZ6S+trRIR67GVrwDeFURg6TOMJzCxqgjFO0oVmjQSI QZE5kpbP6cm4cbOUw7Apies0JnO8gNFL81pc46Vw3QAaibF3wt9GOb546Zyu4v3LH1/THz65oosf X9FZuL4EwDnjWXrBOAaPY/gEThshp0Js+40bp5lNIyI6gYMmY3OanJ/BmUR7bim+oTTPDpkVYm13 lH0+M8Z5MERijgMigHEBvsjsIZoNG5/ROAD2jEc0zt9MADBqqDPLwjb3wmgfY/wsXpzDGNN9g/SA cYAswPdZAG5cgOuMs+wvLkKR6WWcxTtNhP0Y7qODe1hnHmJfZShidBXSJIKuYpcsyCZSwFQ/GBCC rjc2klibJk/9sMSKzvJCviQ8Mx83bIIoGL772Xka5Q/8ZhGb/HD6GMMkcyCkALliktkTnmAni7xC 2A2Hw1+CmydP8B7GBXnJRGw6HpH5dUOJM3B9XZMLyA0cEcKoQISdMOb2brq1c4QNJfRVr2+cd46x scRu2YgpJGPyUWgc6K7BYJgqG2Y9gOfZcBow52gxKwhNJgAyRqhCeG+cResxttGG8aabPUS73+yV UIK9PtaBR3npKCAmNUp/8PDyTpSqgyo3SO8YoVdEMHCaaEb5zgg0NNsSMZJ1jkjNUgCi83NEioVx AAxgoAsn2YeDOGRcvXx/h38EAFxDNPYZB7KR6g6yJ8NGk4O1aAeVcYD7DkA6AmPIlbAG2auxYiRZ lPDOUCLDgDLJ68Xjdjw9MDyCIg2oze6m+zKBoae0Uo676cD2YZ9ah+ghHLsAEaTZBaaihDusMBQY IxIm9FGoanJqjIrm57qbKA5QYOx4eoC5hMMTUjd7LN3eUXpSgAV1v7pwTCdzji6qaR8bTQ4i1Yst PYCzA8hOZLzjE2zSsm/DppM3tiLL8MuU1FGzqcnwoG+MhO5xD7NCz8ojq5BNLKvamBXael2MAdWx CtnUP8gS6yBNk/5DmXZPjNFMfRoNh4gE/cNUPfqLiewooQ8B0ETSw8s90GGAaDrYq+wbCrBY7pNt yK+OgSHZWHPuYguvi+j0AWQAhxpHGQoNoQJ8RNLMR4I4fnxxVSMLGwoyrKExKEL5dU8QOnjp8OIV ekgvoq0X77SwldbIWnCbY4AZm1OtPQPImH6WfQDGFLMd2rUDut0zBPAhDKMP8fIhHOIdG1fQUJD8 8REJz1gQL0InqNHrGUYRDMWj0I7hnXxHH/2qz0OEoa+X2alxsNkxDhn5TrkNL61QuVYVottPsocf Q6KMLPGjBIZlOrMbhK6JKD8YIAd4acgkMxQbZJe2dYBVerzfxLSzwe5SY4+TtWI7gq8LqQKofjMc CEQGCrahz44jfHgVYEicPqLVjuwx0erDQd3ImTaMbQdwr5l7sHXhIkf89KxAXM7E6B30JLq86UUT FJ0Ro34x/vQFOvqlizpH6T59+ZIuXL6sORriAp3eipB8w8gIM3kZMclJpTFTR1M+p6jRMcqkne7e aXapnFCM1cJGJvz16C6b00XOuKGEV932AehGhIhah8OJvHGyz8JPNaBlk2OIBQJnXOG2s7XXDp2c fKeb6AybAkOVm/6yq8/QU2Ko2nWapJEmM2vrlOr1+M9E1pE3BsB5xiWUwZVPrmoVMCuUc8uP6vRR t300u0E42M/GpzvEFjM9w+RNCFBeknjQVBhKnpuk9rO3aPbaB0PUelMa4b8Pjw6RgB6+awCV0E+y migYYdnNZ7+X6auJNE4zRSBkmihdfGaBvoPxRnacRj+dvXJOG9cu6TK/fbn08WWdwWjzm5YNmuk6 v3W5wPWLzEHMb2M2UAXrF4kKkbKM8Wa2ZSpJLxWki3LXzy5WB5To4uUOjns47mb7rR0O20lAhymR I2yWwmM/uRVg7hCajEIDKtTiLJRYiNPDqNyIkRzxLo3DaGym6Zl9yaABMj+LCgYIcn3t7FmdQ8We Ach5BOWZK3ifCJjrCxtnNEd0ZgF85qr5Uc9FrZ/f4Ec+5+IazYhIqx8DW6gY7VQOsz9oY9eqacAH fXwk+hC7V+bTG9/FaiMhOwHVR0HoMUKTpDXzCyPVIwbEAosDgJgxEyIjHinrAcpwIGL6Bk2W37OY GV8ACgdNZTP9huqzQJ9ZOoeSvUBULhKRixs6C4BVhGEMWT9NkpuJ1RRabNrIf+hu5ijzSH/zgx6j mOO/EGqmTzSx5dZOUtf3UwLNJzxvpvw2AsokZYeXn3VAkS4qWTdg+qk6duYwLsqom8oUiJfY6XjH jtAzxoxgxONxyUPCmknVgKlYRN8Dbf1ExyjnGXI0ukpio2znT69olegsm/xYx2CuzWL4NFGbAEhc DSMSjRqeW2WixXwlxv3//3stc1DDzyyquwbi2202tqhNVenG2F5PgGbEpAuDDQgzL+kxDYvhJJL9 nDup8x4khGl4Huq80V6jUM00Rx+fQ+SPySdn8MYvKMza1Bh0M+XVADXaaQrdZXJlDuMnAWMia+Yx Rg0bpW1oagSlATNlSrFZEiIa/wni/wHgNWODea0WGQAAAABJRU5ErkJggg== --------------Boundary-00=_Q85Z9EHAMY5000000000--