X-Virus-Scanned: clean according to Sophos on Logan.com Return-Path: Sender: To: lml@lancaironline.net Date: Wed, 12 Apr 2006 11:19:49 -0400 Message-ID: X-Original-Return-Path: Received: from imo-m24.mx.aol.com ([64.12.137.5] verified) by logan.com (CommuniGate Pro SMTP 5.0.9) with ESMTP id 1065783 for lml@lancaironline.net; Tue, 11 Apr 2006 20:16:49 -0400 Received-SPF: pass receiver=logan.com; client-ip=64.12.137.5; envelope-from=Sky2high@aol.com Received: from Sky2high@aol.com by imo-m24.mx.aol.com (mail_out_v38_r7.3.) id q.39f.a8769 (58550) for ; Tue, 11 Apr 2006 20:16:05 -0400 (EDT) From: Sky2high@aol.com X-Original-Message-ID: <39f.a8769.316da0c4@aol.com> X-Original-Date: Tue, 11 Apr 2006 20:16:04 EDT Subject: Re: [LML] Re: fixed-pitch prop X-Original-To: lml@lancaironline.net MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="part1_39f.a8769.316da0c4_boundary" X-Mailer: 9.0 Security Edition for Windows sub 5300 X-Spam-Flag: NO --part1_39f.a8769.316da0c4_boundary Content-Type: multipart/related; boundary="part1_39f.a8769.316da0c4_rel_boundary" --part1_39f.a8769.316da0c4_rel_boundary Content-Type: multipart/alternative; boundary="39f.a8769_alt_bound" --39f.a8769_alt_bound Content-Type: text/plain; charset="US-ASCII" Content-Transfer-Encoding: 7bit In a message dated 4/10/2006 9:14:20 P.M. Central Daylight Time, n103md@yahoo.com writes: ........highly pitched fixed prop has MUCH less drag that a typical C/S prop that reverts to flat pitch when the engine quits. My 235 has a 64x78 wood prop, and like Paul's has a glide ratio of well over 10:1 with the engine idling or with the mixture cutoff. I haven't measured it with the prop stopped. Also like Paul's aircraft, mine takes a while to stop on the runway. This is a definite disadvantage of a highly pitched fixed prop. It is also a challenge when descending in formation with draggier aircraft, including LNC2s with a flatter prop. Paul seems to be a pretty smart guy that knows a thing or three about prop drag. I don't think he was quoting from an advertisement, or resorting to numerical mumbo jumbo. Also, his prop is quite a bit different. The thin tips probably reduce gliding drag relative to my more ordinary thick wood prop. He did claim 15:1 with the engine idling and not with the prop stopped. That seems reasonable to me... and I've got a lot more hours without an engine than with. Bob and Paul, Sorry if I was misunderstood and I haven't flown a fixed pitch prop since 1990 (C152). Also, it was unfortunate that I hadn't brought my copy of "Aerodynamics for Naval Aviators" (AfNA) along with me while on vacation. Let's look at the diagram Paul referred to: Paul has mistakenly claimed that this diagram represented drag vs pitch - it does not since beta is blade angle. Earlier, the AfNA makes two important statements: 1) Beta, the blade angle, includes the effective pitch angle, theta, plus the angle of attack. 2) Beta varies along the blade, but a characteristic value is measured at 75% of the blade length from the hub (Paul did his calculation at that point). Guys, please allow me to take back the mumbo-jumbo part. It was a mistake. The main purpose of my comments were to note that optimistic estimates of engine out performance will not do anyone any good when their engine fails. Time can be lost in trouble shooting and maintaining best glide once it is reached, time that takes away from glide distance. It would be best to know a pessimistic rule-of-thumb for evaluating what landing site might be reached. Bob, I am glad to see you mention the 10:1 ratio, would you use that ratio if you lost the engine and the prop was still rotating? On further thought, I would agree that a stopped fixed pitch prop would provide less drag than a stopped (at fine pitch) CS prop because the blade width and angle are probably more beneficial in the fixed pitch environment. There also may be important differences between different fixed pitch props, too. With rotating props and the CS prop at coarse pitch, I'm not sure which is best. I will try to find the actual blade angles for my CS prop at fine and coarse settings and report back. It does not fully feather as that adds to the complexity and weight in the hub. Twins need the feather capability to minimize drag should one engine fail and the extra one is working to lengthen the glide. Part of the problem is that prop drag is a significant drag component when our slick craft are operating at best glide without power. Note that the AfNA chart is labeled "Propeller Drag Contribution." Prop drag is less significant in a draggy airplane full of rivets, wings held on with struts and with wheels hanging out in the breeze. The chart is useful in pointing out the penalty for a wind milling prop at fine pitch and the drag reduction as the pitch is coarsened, even if by only a relatively small amount. Here is some data from my 320 powered LNC2 with the 70 inch Hartzell prop. This propeller is the same design as an 84 inch prop, but with 14 inches lopped off (by Hartzell design). Thus, the blade is very wide. At cruise pitch (somewhat fine), power reduced to near idle and at best glide (about 107 KIAS for the load as indicated by the AOA device), the descent rate was 1500 to 1600 fpm (104 Kts is 10,836 fpm), a worse case ratio of about 6:1. At coarse pitch, the rate was reduced to 400-500 fpm and a worse case ratio of about 21:1. I don't know if I could get the prop to stop for a test, but I think the drag is some where between fine and coarse (the area of the chart curve where beta is less than 22 degrees). BTW, I use the rotating coarse pitch 10:1 rule-of-thumb ratio because I would like to arrive at the "set down" site with plenty of reserve altitude. I would say that the most important element of our LML communications is to advise the reader of the flying configuration so there is no confusion when trying to figure out the point - I think this started out that way several e-mails ago.... Scott Krueger AKA Grayhawk Lancair N92EX IO320 CS Prop Slow Build 1989, Flown 1996 Aurora, IL (KARR) Do not fly behind me, for I may not lead. Do not fly ahead of me, for I may not follow. Do not fly beside me, for I may turn on you. --39f.a8769_alt_bound Content-Type: text/html; charset="US-ASCII" Content-Transfer-Encoding: quoted-printable
In a message dated 4/10/2006 9:14:20 P.M. Central Daylight Time,=20 n103md@yahoo.com writes:
........highly pitched fixed
prop has MUCH=20= less drag that a typical=20 C/S prop that reverts
to flat pitch when the engine quits. My 235 has=20= a=20 64x78 wood
prop, and like Paul's has a glide ratio of well over 10:1 w= ith=20 the
engine idling or with the mixture cutoff. I haven't measured it=20
with the prop stopped.

Also like Paul's aircraft, mine takes a= =20 while to stop on the runway.
This is a definite disadvantage of a high= ly=20 pitched fixed prop.
It is also a challenge when descending in formatio= n=20 with draggier
aircraft, including LNC2s with a flatter prop.

P= aul=20 seems to be a pretty smart guy that knows a thing or three
about prop d= rag.=20 I don't think he was quoting from an advertisement,
or resorting to=20 numerical mumbo jumbo. Also, his prop is quite a bit
different. The thi= n=20 tips probably reduce gliding drag relative to my
more ordinary thick&n= bsp;=20 wood  prop.
He did claim 15:1 with the engine idling and not with= the=20 prop stopped.
That seems reasonable to me... and I've got a lot more h= ours=20 without
an engine than with.
Bob and Paul,
 
Sorry if I was misunderstood and I haven't flown a fixed pitch prop sin= ce=20 1990 (C152).  Also, it was unfortunate that I hadn't brought my copy of= =20 "Aerodynamics for Naval Aviators" (AfNA) along with me while on=20 vacation.
 
Let's look at the diagram Paul referred to:
 
Paul has mistakenly claimed that this diagram represented drag vs pitch= -=20 it does not since beta is blade angle.  Earlier, the AfNA makes tw= o=20 important statements:
1) Beta, the blade angle, includes the effective pitch angle,=20 theta, plus the angle of attack.
2) Beta varies along the blade, but a characteristic value is measured=20= at=20 75% of the blade length from the hub (Paul did his calculation at that=20 point). 
 
Guys, please allow me to take back the mumbo-jumbo part.  It was a= =20 mistake.  The main purpose of my comments were to note that optimistic=20 estimates of engine out performance will not do anyone any good when their=20 engine fails.  Time can be lost in trouble shooting and=20 maintaining best glide once it is reached, time that takes away from glide=20 distance.  It would be best to know a pessimistic rule-of-thumb for=20 evaluating what landing site might be reached.
 
Bob, I am glad to see you mention the 10:1 ratio, would you use that ra= tio=20 if you lost the engine and the prop was still rotating?
 
On further thought, I would agree that a stopped fixed pitch=20 prop would provide less drag than a stopped (at fine pitch) CS prop bec= ause=20 the blade width and angle are probably more beneficial in the fixe= d=20 pitch environment.  There also may be important differences between=20 different fixed pitch props, too.
 
With rotating props and the CS prop at coarse pitch, I'm not sure which= is=20 best.  I will try to find the actual blade angles for my CS prop at fin= e=20 and coarse settings and report back.  It does not fully feather as= =20 that adds to the complexity and weight in the hub. Twins need the feath= er=20 capability to minimize drag should one engine fail and the extra one is= =20 working to lengthen the glide.  
 
Part of the problem is that prop drag is a significant drag component w= hen=20 our slick craft are operating at best glide without power.  Note that t= he=20 AfNA chart is labeled "Propeller Drag Contribution."  Prop drag=20= is=20 less significant in a draggy airplane full of rivets, wings held on=20 with struts and with wheels hanging out in the breeze.  The chart=20= is=20 useful in pointing out the penalty for a wind milling prop at fine pitch and= the=20 drag reduction as the pitch is coarsened, even if by only a relatively small= =20 amount.
 
Here is some data from my 320 powered LNC2 with the 70 inch=20 Hartzell prop.  This propeller is the same design as an 84 inch prop, b= ut=20 with 14 inches lopped off (by Hartzell design).  Thus, the blade i= s=20 very wide.  At cruise pitch (somewhat fine), power reduced to near=20 idle and at best glide (about 107 KIAS for the load as indicated by the= AOA=20 device), the descent rate was 1500 to 1600 fpm (104 Kts is 10,836 fpm), a wo= rse=20 case ratio of about 6:1.  At coarse pitch, the rate was reduced to 400-= 500=20 fpm and a worse case ratio of about 21:1.  I don't know if I could= get=20 the prop to stop for a test, but I think the drag is some where between fine= and=20 coarse (the area of the chart curve where beta is less than 22 degrees).
 
BTW, I use the rotating coarse pitch 10:1 rule-of-thumb ratio beca= use=20 I would like to arrive at the "set down" site with plenty of reser= ve=20 altitude.
 
I would say that the most important element of our LML communications i= s to=20 advise the reader of the flying configuration so there is no confusion when=20 trying to figure out the point - I think this started out that way several=20 e-mails ago....
 
 
Scott Krueger=20 AKA Grayhawk
Lancair N92EX IO320 CS Prop
Slow Build 1989, Flown 1996=20
Aurora, IL (KARR)

Do not fly behind me, for I may not lead. Do no= t=20 fly ahead of me, for I may not follow. Do not fly beside me, for I may turn=20= on=20 you.
--39f.a8769_alt_bound-- --part1_39f.a8769.316da0c4_rel_boundary Content-ID: Content-Type: image/jpeg; name="Propeller%20Drag.jpg" Content-Disposition: inline Content-Transfer-Encoding: base64 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8S EhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEU Hh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAAR CAEvAd8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAA AgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkK FhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWG h4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl 5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREA AgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYk NOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOE hYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk 5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6+xzgUDiilxk0AJ24oA9aXtigCgBOnFLj 1oIpR0oATvSYpSOlLjJoAaKKcaB0FADT+PXtSOP3bfTFPpHwUYnpigDB+HeT4B8PZGCdLtiQ OMfulrexWH8PSreBPD7KMKdLtsD/ALZLW4TQBDe3dtZQCa6mWGLeib26AswVfzJA/Gpscc9a ZcwQXVtLbXEaywzIUkRhkMpGCCO4NZPhi9lP2nRb1mN9ppWNmZtzTwnPlTE4H3gCDx99XA6U AbI6UtHWjk80AHfrSik9KUigBPqKOPWlzijpQAlFKelNPSgBMUdqUg4DYJHc+lI3B6igBOf8 mgjnrQ2AD8wpAykA7xnuKAFo74oJBPHOfSkGRjIxmgB2D60tMyPm+Yce9KeRxzQA4nsBx1oG cU1mAUsxAA6n0oZgnJxn070ALRSM4UjLAbumT1OM4/IE0jSIHRC6B3BKqTyfwoAfnmikBz0q FLq3eFpkmjaNSQzhgVUg4OT0GKALBpvPamC4hby/LmjcSrujKsCGHqPXqPzqtc6vpttN5Fxf 2sUxBKxvMqs2ODgE84NAF0fWjHvVJNW0tr02K6jaG67w+cu8fVc570Pq+lxTRQzajaRSTAGJ HmVTID0K5POe1AF0CjBqOS4hiRmkkVFVtrMWAAJxj8yQKpW+v6Fcy+Ta63ps8vXy47pGb8gc 0AaQo61W+32X2/7AbuAXmzzPs5kHmbf723rj3pyXlpIkckdzC6O5jRhIMO43ZUc8kbWyPY+h oAsEUdqCR6ikzgUALg+tAHNAzS0AJx60cGg0tABSc+tLRQAnTmjqKX8KKAExSUpo70AJRz6U pzmgfWgBg6UoGaU8Un4/nQAo9KTrSGnUAJRmlPSkHtQAZo9xRR3oAXrRjAzQKCeKACmy/wCr JHYU6mzA+UR7dqAML4c/8iB4dz1/sq26/wDXJa3jWD8OGDfDzw3wc/2Va5z1/wBUtb9ACccV znjKCSz8nxLZif7Rpp3TxxHP2i2JHmqy/wARVMsoHO5RjqQekxzikIyMHpQAkMiTRpLE6vG6 gqynIIPQ07ofaud8JO9jqGpeG3H7uw2T2jcAfZpS2xAB/cZXQAcbVTvXRUAB9qUZPekpR9KA DHFFJj3NKDQAhpD05paOx+lAHjsGgeI9U8bave6ckNutv4hiZ7+TUZlk8hEiZ4liX5WBGRhu Dn8a5rTrfxLp2lWM8yRWFrcaXNcyXGn3Ez3V1GWiEpkzwJQkjSjbkgr8vAIPrsnh7xGzOR46 1OMMclVsrU/hzH0xxSN4e8RMMjx1qquep+x2hz/5CoA828SJpV1bLZ+B3t9U06b7CL6Brx3h aZruIRB3ycM6GXf3ICkjpml4n0DU9CudFj1a68Mw2s95dSw2eqTSS6dajykUIm/acn5mA4AJ +XHOfUl8La8qMq+O9WTc+5ttlZjJ7n/U/wCNB8Ma8W58e61tzwv2Oy/+M0AZWl+IPC+jeKry I63pVjpb6PYmwQ3Ucduyb7kZiyduMBRke1ULXxHpLeBvE2kprVm+ribWCtqLofaD++ndcLnd 9zBBHbpXTL4X1kc/8JzrmQMLi3sv/kegeGNaLM//AAnevZYdRb2Wc/8AgPQB5B4atdNuPhel naTeC7vXLk6aBHaw5lKNcwbhdgEs3zEBuB1P4ei/Buw1KwuPEMOrWFhpV0l0kf2LTo2jtCgU lZ41Y8GTcQcY+4AQCDWyPC2tAf8AI966Tnn/AEey/wDjFTJ4d1dVAPjnxAcH/nhZf/I9AFf4 qR2Enh23XVo4ZNPGpWhuRMgaLy/OXJcHjb9eK4kaLdazq8MWh2GkzaMr3racmqWLXFosOLMf IvGAZfO2nONudoK7QO9fw3rLEH/hO/EQPQ/uLHB/8l6cfDmr4IHjjXznv5NkCP8AyXoA83ms dZTQdEMXh7WLubRLJtQUQbUjgvDOWaJVZ1JRBHLEqpuxHJjuprX1xJ08brcDSLS6vptatHgm urSUz/YykK7oJFxs2MJ2ZSfXcPnGevXw5q4UE+N9fDf7MVl/8j09PDuqdW8a68ecn91Z8/8A kD2FAFnx5FfS+Ctah0zznvWsZhAIjh2fYcBT2Poa831iDwgZbG40zwver4ftr+B9VEWnyxwt iKYRs0JUbvLJXedhxvjBJ24X0P8A4R/UOf8Air9dyTnJW1/+M8Uz/hHL/dkeL9fA/wBn7MP/ AGjQB5o+kX9xr9trPhjT7qC105r++0aJYWhiZB9iV4QpA2rKfte0HAO7cMDmtTQdDh1nSvCV /qnhoLNLruoSzxXlkDJDG4vZFV8jgbmQjtnBHau4Phi6YqT4t8Q5U54eAZ+v7qnf8I1NvVm8 Ta6cH/nrHg/XCUAeeXnhHVTqc2pPGGsZfEqSyQJpyfaFj88bHSXbv27guSDwm/BFc9q+jXQ0 KGyuTqNhcy+FbG3hiXRHuzLIscoKbxG3lMCQOqnkHsDXsTeF5XXa3ifxABkYxcIOmfRKdB4Y KKynxDrr54Ba4XI/8doA4u5FxLLN4dn0q/8At934gs75F+ySNB5CNbySOZceWAojkXBbORjH IzJqfhy1gm8VtYeHIkdprNrZ4LQZfGzcUwO2DnHc811b+E2ZGQeJvEaq3XF4M/ntzUa+CwOT 4n8TZIwf+Jif6D9aAOQtLNBeTabJ4ev4/EJ8S/bUvhaOVa3FyHMvngFVXyN0ewkH+HbzTNC0 XxHo/iDw9arpjvoc+oy3sucu9ncFZw3HRY2DK3+8W6ZxXcQ+EVidmHiLxEdwwQb8n19R7mrF v4bSG9ivP7Z1uV42DBJb9zG2P7yjgj26UAbo244FKcYpD1yBgegpeMdaAEpR1pB1paAAijpS nijGaAEwc0tJ9KKAF7UlB4ooAOuKCB260e1HagBO9Lj0pO1LnigBpznpRgY5peKOtAB+FJQe lHUcUABznFHNB6+9L9TQAnbJoGaMe9LzQAUEcUelLnigBKSXOzIG6lokI2H6UAYPw35+Hfhs nqdKts/9+lrfHGea534Ylj8OPDXYf2Va45/6ZLXQ4oAU4NN/HincelIcc0Ac541MmmrbeJ7a 2muZdODLPFCu55LaTHmAD1Uqknr+7IH3jXQxSJLGskTB0ZQwZSCGB7g+lKwVlIYKwx0PIIrB 8HM1pHeeH5chtKlEcOTy1sw3QnHXAUmPJ6tE1AG/RRR3xQAEUUUdqACjnFFHagBtGKUijHFA CYBpcUDvS0ANIpABT8U3GD1oACKQ9OhpaU0AMwKUUGgUAFHOOlKKD7UAICc47UuOKO+TRz68 UAFKKO9KKAA0DNJ9aWgAoo/DFGKAFHWkPWl6DNJ+tABnil4x0pKAfagAoFFGevFAAfyoyc0h waUY70AOJ9aTIzSfjmigBcig0lO7UANo6nNBo78UAH5UfhRRQAUDFA/Ck6UAB57UClo7UAHe iiloAQUuKPpS96AEwKOlFB6CgAOMUyQExt9DThikk4Q454oAwfhlx8NfDAPX+ybXPH/TFa6G uf8AhqAPhz4awc/8Sq25/wC2S1v5oAKQ0pNJ260AHTtWBq6LYeK9L1YFljuVbT7nAwuWO6Fm Ps4dB7z1v1R8Q6eNV0S609ZPJkmjIimChjDJ1SQA91YBh7igC8MZpcCszwxqZ1fw/Y6i8Xkz TxAzQ5z5MvSSM+6tuU/StLcKAA9KKTJGaDwQDwT0oAWkNL64poOfyzQAoz60oHvTcj1FLz07 9/agBcdRS0mMDJzikDKTtDAnOMZ5zQApxRijIPT6Ud6AEPtQaU474obHagBp6+1HfFLigACg APT0pozxT8Umc/SgBOmKWgjmlANABRQfSigAFKeOlANIc0AKOlHNHApaAG8milox3oAQUvb3 oIprgshA6kcGgABB6Gl+ppiIEChBtUDG0AAU8H2oAQgnp0FLn0HSg0DuaACjtS5OaM0ABozQ aQUAH1oFKRxSUAFGfWijuaAEA4OaDQ1KfXFABRziiigAoooHWgABxx3o/ClPrQOlACd8UZ45 pRj1oNACfhSMcAjNONHGOTQBgfDUk/Drw1znOk22T/2yWt6sL4cDHw98ODcDjSrYf+QlreOf WgBKXtQBSUAB7UDB9cGjiigDmtEgh0TxdqWmQoEttSB1OHknMpYJOAOwyYX+sjGt++hFzYz2 xkkjE0TRl0bay5GMg9j6GsbxWptbnStajDk2d0I59g5aCb92wJ7KrGOQ+0Vauq3L2enXdyoD NDC8ig9CVUnmgD578J6n481jxXa6Zq91Pawa1Olm08d03mwnTlDTuhXGBK4YHnqSOQAT097q GvQatpmq2l5d3I0ttcuru13lvtNsmoIjJgnG5Y2JTPdFHGajm+IniqDw7aajb2Vpdx3RtyLx NAuohbyTON8aRtJuuCQxIMZA45HzAVs6V4v8V614kfw/af2dbDEsq6tcaZLGsixeV5kYt2kD Bw8y/MWAI6AnmgDzvwvq8D+Evtura7qSa8mgxf2LvvZfOe5+1XioFUN+8JYQqdwOQBngVteM JPGMHiLxVa6bdO8fiWRdOVpJPls5Y7ZJGZec4aLz/u85Ra04fH3ie51HWdOtLDTpL3QkSIQW uj3F5Hdzl5MossbDyVIVBlxhWZs5AzVjQPFfjHUPAd34rurgRy2mmT3pt59JMcLuEfaEk8wk gFVOe49M8AGDD4im0yy0TU9U1aaC1TX9LNzLPM20K2koW3exYknPGea7C8+IXha2+IOn383i Szj0m70iZIpjMfKklWdO/TIBP681vfEXW7rQbXQfskVq6ajrlpYziZMgRSEq23kYbGME5xWP 8W9W1zT9d8O6ToUdwsV8LppxZadHcygRrHt2rIwUDL8n6fiAc58RTceIPELxaNrk9vFfS6LN aXdvIWWMM12RIoyAeVU++0Vz665earf6xfeJ4hBo8etpBqtpcSO0CXCWflqH2ZJg89R0BHKE jrjp/HXifxR4YvLLT11PUGgttGa/uZ7fRIpSDvbb5yh1EaKoAyp65Pbj1fRWuptIs5tRt44L 2WBHuY0OVSQqNwB7gHPPfigDn/g/cSXXw70uVrcQLiRY0WSR08sSuEKGT59hUKVDcgEDtXWg 80YAHFIOtADsZNFFJQAvBNA9qD0pAc0AKBQQT2oIpDjOMUALjtQWCgZOOcUvekPWgAJBo7Zo Jz0o5oAO5ApeRQPpS0ANpaWkHU0AHANBxRS0AJ2pKU+tJQAvtQRg0dqSgAoGfTij6cUo796A AjmgZzQT6UfXmgBaKQZJpeaAG8E0GlxnNIOtABQeePSl70HrQA3ggUY5zSc+mKU0AGfalBpD jpSjGOKADJz2o4Io75FH1oAT2paKTpmgBaXPGaQGigAJ46UE4jb8P50fjSMflNAGJ8PgF8Be Hsf9Ay37f9M1rczWH8P8f8IH4fAJI/s23/8ARa1uCgBc5o7ZpCTmgdaAA5opSelNxQBU1qwg 1XSLzS7rJt7u3kgkwcHa6lTg/Q1R8OXDaz4Wj/tBUNxJG1tfLGTtEyExzKvsHVgPpW1n0z+F cxoFyll4x1nQGcBp9uqW0eMARuBG4HqfNR3J/wCmg9aAL8vh/TpNF03SWjkNtpzQvbjzCCDF jYSR16fjWbr/AIF0TWZ3uZWvbW7a7+2Lc2ty0ciSmNI2KkHABRApGMd+vNdQeh+tYGueJYLX UP7I021l1bWCob7Hbn/VKejyufljXr15ODtDHigBNE0Pw54M06SazWLTrSG2WKWSWY7FjR5H yxY8cyuSc5OeegxjeH/B/hi/8P7LJNZTS7iGa3FvcXU6K8TqUJCM2QCCSp47EYyK0NM8M3d9 qQ1bxdNBfzxyB7Sxjz9ls8dCqniR85PmMMjPy7e/VHOOTk0AcnN8P/Ds+mtp91/ad1CZYplM +ozO8bxklGVt2VPzHpjt6Uy/+HPhi7itVkTU/MtJJJYJv7UuPNRnVFcb9+7BEacZxx7muvxR j86AMKx8J6La27RLBJMHtGs3a4nklZ4WZmKsXYk8u3J57dq17K3isrOCzt1KwwRrHGpYsQqj AGTyeB3qb8eaPegAzzS0nagdaADoaXJo6mg8UADelID0NHSjrQApPcUZ9aTNHfNAC4GaQml7 UhFADsH1oFITRnsaAHUU0kHpTjjvQAUU3qetLn0NACgUmCaXk9qQ5B5oAD0pDQaUegoASlJ5 PNJwOtLkZ4oAQdKdSHrnFJj1oAOfrQOtKMdaD0oAOvFGaKOtABmkHNLg96b6n1oAXpQx4ozz Rx3oAbS9etISO1APyA+tAC/SgcUjZGe2KTIxwc0AO5xwMUE0nTvS9TxigBR0zSZzSdO2B60o zjPagBTR2FIPTrS0AHAHSkblSDSnpSMODQBh/DvJ8A+H88H+zoM/9+1rdrB+HWR4A8PjGMad B/6LFb1ABxS54pBjHWjHFAAT60Ue1IVG7J6gYFAC5Nc74rVbPWdC1wbIzFd/Y7iVgc+TOpQJ n3n+z/lXRVk+MbC41PwxqFlZsqXbwM1qzDhZ1+aJvwdVNAHP3Vt4x8Q+Ibq3mml0Dw1FmJHt pVF5dsp5cNz5aHp2bCg5G6uq0fS9P0i0+y6dax28W4uQo5dj1ZieWYnksSSe5pNCv4tV0ay1 SAHyr23juI8/3XUMP0NXvrQAg/WjFFKelACY9qT2xzRxmloAMetFHFHWgAGMUd6MYFJQAtJj 0o5oNABzmlB5waQ8d8Umc0AOwD2oFB9qTPY0ALSE0d+KXtzQAYpOM4zzS0mOc0ALwKKO/ag9 aAF+lHamqcqDgjIzg04e9AATQcDrR+VHegA96MijikPtQAc+tBzmigZoADnHelGO9BHqcUmO vNAAfbpR1NGM0UALS0maO2aAA9DSdqXOaQ8UAFIx7UvFLQBDKWCNsAyB+Vea3WsRWvhm8vrD xNfXGvSaPcXMlo8pcRSog5MYBEJVjtC/KCSwO4gY6fxx4qXw0NOU29rI19cGEPdXi20UW2Nn LM5B7KQOOpFVNT8R6hpsjxR+Hftc8VuLvUjb3CkRRtvACFgDKxCOduBwOuSBQBm6zr+u2Vz4 ie7VLeeLSbJbGG1drlRPLLcRhlUIpJLBAQB0SsLS9a8Sya3puj6VfXs91o0d61xbagGjfUYd 1uYS+5QQ2yYgORy6E85Ndy3imzbS59SgtWmghvobRSGz5nmPGgcE/wAOJAfwpmkeLbS/1F7a W0+xp5Nw8U0kqlHWC4eGbp0xiNue0g9DQBxa61e6ppou7rVr6GyZb6509hfNaefIt5IFRpQD tKR7AsZGDlshtvDtB1Nb/wAbXUmv6t/Z7G+hW3tLjxFLbTITDGyRrbqQkgLHaemctxwBXT6D 42Gra9a6a2jSWsFxZRzNPJIDsuZE8wW7Lj74i+ckHgdq6LR71dS0Oy1NoCjXNvHPszuZSV3A Z9ecZoAt6m0h025MLGOTyW2kHBB28EV45rOteKdI8H6nrhutQvLW70aG1cRyEy2VwbMOtypy MKWchsc52t2rsrHxrfXHgm98UGx00pa2Ul01vBqJeRCse8RvmMbG6g5zj3qxY+Mr3V0aHQ9E ilum0+K7EN3d+RtZpHSSFyEbayFDzggkn05AOttS32aIsxY7ByTnPHWpc1zPw78Qar4m0JdX 1DR7bTIZv+PdI70zu2GZW3fIoXleME5zzjFdNQAfjQ/T/wCtSUp5FAGB8NiT8PtA4/5h8I/8 cFdBXOfDJg3w/wBDK/d+xx49hiuj60AA9KU0g70cUAAPPSjmilBoATFBAozSHr/WgDm/h3/o 2j3Wing6TfTWioBgJFu8yAD/ALYyRV03Nc1YsbH4i6lbEbV1OyivIgB9+SJjFMfwU2w/E10v NACYpTQM0HjmgBvQEnoKQHcAcHB9RinUdulACYHGKX2oooAM5HFHU0maM4PHNAATjPFB7UE8 9KM0AApOMmlHtR2zQAdulIOT0o70Z5oAWl5x0pB1pc0AICc4pTmgDnNKcUAIaXvxSUZoAAOK MUCjBoAUUcUn4UA80AB60vakz3peSPagA5HajjIozQetAAR70mPaigcUAHIo54xRQM/hQAU4 c009MmigAx2zR2oxRj3oAKKKKAOa8Z6DqGsnT5tL1ddLu7GdpUmNqJ/vRvGflJA/j61yXxF8 OO2iwDVPiC2j3NxGLW5uY4fK+3qpdlj2qwIwGflTyCcivTzxXM+LtGu9V1XQZbea4t4bO5kl nlhZQ4BidQOQcglgDwTj060AcpqWn6d/wk+lxJ44t4NH1u4jurXSo7ZGW5eERkbJl+6uY0JH c8d8U7VrDwXqQTwrfa3GtxaapLNMhJQu0zPK1uW4Ug+aPlzztXjPRniXwLrVxJfTaRJp0C2k EK6YJ7YzTGWNjMZFfeojZpWAYlTnYM8VJL4LvZda1PULhbuZbnV47ptN+1strcQCOEEsBlQ6 uC4ycnywOhoAvR+G/DMniy7UaxOdeivI9WmX7S4EaFsL+73bCPLXys43bceoql4Qu4INQaO1 +JMF5o9kVj/s5tPRCI5MxwgS/eYbygDDIPTnNT2HhrxNb+J59buhpUxvNRnFzCtvtkNq6CNV eXcQ4CxwttCg5B565qWnhvxHdXksY0y60yxR7Vlt7nUluwzR3ULnySSWiQJGw28A/LwMcgEn l6fBY3ng678XzzW01q+lpAdM2+WWURr84X5sZ9cHPJrT8Ht4Uv8AxzqOuaDdXclze2UaSq1l NHEwQ/6xXdQrZDL90nIwRnNdG2nynxgmpCECL+z2tzJkZ3eYGxj0xnmuV+Fdl4j0aQaPqnh6 6tbVLVQ18+sG4jeRMAKsJP7sHJPy8cc9qAOt8K6Mug6Db6Qk/npbl8SbduQzs3TJ6bsfhWqB RzRQAUHO04pfrSN0OcdKAOb+FYx8PNEXbtItVAHoBmum9v1rmvhhz4B0dv8Aphj9TXS/jQAU UUfjQAUUtIKAGyMEHJ+g9aVFYDk5NKRk5NKPrQBy3jLbZa94b1tiUihu5LO5kzgCKeMhQfYz JB+OPeuoXFZviTRrPX9Du9IvlLQXKbSc8qQcqw9wQCD2IFM8IalLq/hqyvblFju2Ty7tF6Rz oSkqD6OrD8KANY0e9JS0AJmjn1oFJmgBaQg5paKAEx0ozjpS/pSE5PrQAZpKWkoAOvIpaM4p KAFoApMij3oAXg8UDpRnmgetAC5HpRRR+NABSYGaWkJOaAFzgnig0DHaigA9aTnPSlycdaM8 0AGPegdaCaKAD8aX6mkpf50AIaUDnpRyccUd6AE7UduaX60ZoAOelFBwaARigAPTFJ9Dil4z SEUAFHSjPHrQT60AMxgc/rSHB4p31oI5zmgBprznxj48i0PxgYH1KOHTtKjiOowiPc8xuCVX B6qY8I5/vB/UDPo/fpms+70TR7qG9iudMtJlvjuuhJErCY7VUFuPmwFUDPoKAOC1LXPEi+M9 Rgt73UVtotZtLKEGK3NmqvFC8iSZHmhmDsAQ2Nzxj1FXvhrP4g1C3g1TWNT1ZUKtKUlezNtN uyMLsTzAo6jLZzwc99kX/h0+K5fDhs83Uuy8llMQ8lp1C7F3f89QkaOF6hVBqvFZeEdP8aW2 lWumxpq09tNdZjHCR5CMWGejFsDg9D0xQBW8HeJZZ/ElxpOoXVzO18rX9k01t5QhTeV+z9Bk qoVs5JOW5IAJ7jiqz2No89vcPbwtPbk+S+wbkypB2nqAQSMDirOMdaADp0opccdaOoxQAEUE DaeuccUlIx4/lQBzfwtDDwFpasB8qOvT0dq6YYrmPhU5bwJpxOMnzeM+krCuooAKPypP89aX 8KACigjmigApRwOopKO1ABjNcxoWNJ8b6tohYLBqCjVLMYwA3CXCD2DbJM9zOT710/tXNeO4 zaQWXiaJcyaPN50+FzutWG2dT3wFxJgdWiWgDpaD9aRGV1DowZT0IPWloATrxRjFIPTNKenW gBRRz6UnQUtACGjvS9qb3oAKPrSt68UE+lAB3wKQZzzSjrR1zQAflSDoKO9LQAnfpS9h60Di jNAC0fjRQc45oAKD15o79qDg0AHGOhzQOlFFAB3oPWlxSUAHtQKCRRQAfWj6UfrSggdhQAZN A/Cg4z1o6ZNAAetAoyfSkoAD15FL9aTPHNFAAf0o/OiigA70EZooHJoAbRQc44o/nQAHqKQg kHHGBwaU0du1AHm+laX4oTSooLzQYoNTGpjUJrtr5WUyNLlsEAtt8omMZGQuByOa7I6QW8Xp rjeVhLE2w4+ckuG546cdM961uM96U0AJ3Bpe9J9aUdKAF+tBGR1pKXGKAEIpHHy0poP3Dj0o A5n4WnHgewAGADKAPbzXrpwa5X4T72+H+ls20fK+cHv5jV1POOeeaAF6UcetJnikoAd9OaKb 9eaPc9aAHd6KQYFKTxjrQAU2RA6lGAKkEMD3FKMYpee9AHIfDxX0N7zwTcTz3DaYFmsp5+Xm tJMlMnuUYPH9FQ96641zHjqNtPax8UwRgvpLs10VXLNZvjzlwOu0KknHP7oD2rpUdHjV0YFW AKkHqO1ADxRxTRRQAo60ufem0tACmm0HpRx3oADnGBRkk/Sign3oAKX9K4qx8cPf+JLrTrPQ b2a1gupbNrlJ4dyyx5zui371QkYDsAMkZwCDRpvjec22sX+s6LPpOn6XvSaeWeJg0iYzGArE 5yRg9Dx3oA7Q4zQDnmuFbx1fT+E7HXdO8NXkzTXQs7m2lmjiktpzMIQjBjnO8jp2OTir1z4t fTbdjq+l3UF4lskz20MiSsWkm8qKNSDgszY7gDdzQB1nfrR+deda78RptA8N6tdaxoclrqul +RLNYLMriSCWUIsiOOCOWGOCCpHTBOs/jvTZdL12/s1aeDSbWO4V92VuBJAJY9nfncBz60Ad hkYxmhea80vPiPdro2g3NvpllBd6lFcNcQ6jfrapBLbskckW5hy+9iAOMhc1YtvifZjSrPU7 rS76O1v4WW0MIEpnu0kaNrdSpIyxAKHOGGTng0AeiHmjvioLFppLSCS4h8idolMsW8MEcgEr kdcHjNTnrQAA0E45pPlpaADNDDmiigBMCloGO5pc0AIfSlzSHnFKc57UAJ2zRSHJpaAAH1FF Az360pHGTmgBDgUDmjI7UUAHHrQcUmTnrxSnpQAdRRwO9JS5waAG57Uv40hzmigBP4qOnY/h QRTh0FACUUvegigAxQe3pR2pqrtJx09KAH9qTp1oFKaAEPtTWztP6infhSNnHf8ACgDzb4W+ FNDvfBtnqElrOlzctM8skV7NGWJlfnCuAD9K6iHwfo8XmCO514bx31284+n73iq3wj2H4c6R sGP3bc+vztXVUAYJ8J2Xkqiapr0ZXOHGrXDEZx/ec5/HpT9I0RrK/e5Osa1MiOypBcXAeMgq Dnldxx7nqK284NHFAGRrek3+oTLLaeJNU0oBNvl2sduysfU+bG5z9CKqnRPEMbxNF4yvJQv3 luLK3YOffYiEfhXQg+lLQBzb2fjhWJj8Q6C69hJo0oP4kXH9KYH+IER/1Phm+56iSe24/KSu nHWlyexoA5611XxTHMseoeF7ZoicGSw1HzSo6ciSOP8Ar0rV1vUI9K0ybUJbe7uI4du6O1ha WQgsBkIvJxnJx2BNWxkdOKXA9KAOMvfiX4Kt7W6+3avFaSxRM32W+RraWQAZwqShS2eg9Tiu E+HkOsapfW2j3/ja+061ltFvdEtdKuICkducZgctEWcxb0GSTlcGvZ723gu7WW2uYxJFKjI6 nowIwQfYivGPEXgXX10FfD//AAhGja69vsGm6zFNFBKnlkeX9oVwCflCq4UncA3TNAHpPgnV 728bVtK1dom1HSLv7PJIhH7+NkWSOQgYAYo4DAADcGxxxXRg5ryv4XeD9Ja21W4uftmna+14 39o2lle3FtHbOABGoRXw6bMMrEEHecYHyr1aeHPEFowax8canJtJIi1C1gnjx6HYsbkf8Dz7 0AdV+NJj5q5dm8f2svEfhzVos8kPNZNjvgESj6c/jUaeK9StT/xOfB2u2iDO6a3SO8QfhExk weP4O9AHWEUe9RyTxRWxuJnWKILuZpPlCj3z0/GnRyRyIrxurqwyCpyDQA7IobNIcUfWgDzC 6stEk+ItomreNvDbahZ6h50FubeKHUssDstml35ZMPjbsBYbQSe9qSy8KeKF1HwxD4utbo3G pPf3dvZ3EZmKrjMZwSwUOqnd14HSmv4Iv9X8ReIJdT1G5s9LudVhnSzijhxcJHDBh/M2l1G6 MrgEEbeOvPM6r8NPEuoaLZabLqt2kRhvTFDvjCafcM2YyGUB3jZDIhBLYLg4xxQB0WmW3gu2 0TWW0/xnb3GnDVrXULqWS+FyLaWOSJgrSMxYhjEo5JOSevQS+JtQ8D6taXWsT+NLCCC4jis4 riG6jIjnik85HU8jcrbWweMAeprL1LRdc8RvbXNt4dm8PNa2ttZlZWgYsReW8uVCsVZIVicj djO8gDtTvFXgfUrLVrPXrO88R6vqBut15c2ktrDcJGIHRAiMFi6nnIzg+wFAGjpOl6J4huJJ 5fFdlrGsXv2W8WS2VV/0W3uVZFSPcx8vzI2BJJ+Zm5HAFa2+FfhydtWsLbWLz7E+sx3txZ2s 3l+UyR5W3ZlOQv7xXAGCAEx0Bpbga/a/Eu18WxeFNZuLWXQPsUkAkthNFKLgt8wMoXleeCRy O/FX9K1HX9M8Ra28ng3XZ4NUu4buJ4mtj5YNrBGyuGmGGDIR3HpmgDntG074ZR6vqEB8UW2o xRf2g8tpdXPneR5qxG4be+WOPJdiSc/O/Nb/AITXwnrml6LoeheLIdR/4R+eO7i8uRGcxqHV FYdxtbbuHXA9cVz+h6D4ntfCXifw3Lo+vyS6jb6gsBluLU2SM7TMnlYbzBu3rncCAT/CK2/h v4P1nQtbsbvVrq7vkj0GK2hM88ZFlJlDLCFUDIYrGQ3P+rIzyCQD0kdBg0nU5oFLj3oAB9BS 44pF+lLwRmgAozzRSDrQAtAoooAOcZoNKSOBQetACUgpTmjnvQAijA7n6nNBNANcl428VzaF rWk6bBHpYfUI5nWXUL820e5GiAQEI+WbzenHSgDreMe9AzXDweMNVuPF83h5Lfw7b3FvLHE8 M+rOs8m6JJXaNPJ+ZQGYAnGSvO2tSTxSF8eReHGsP9GkhK/bhL8outrSC3K46+UpfOemPWgD pMnPpS9OtcXdeKfEFprWtWtx4e04Wul2H25nTU3MjxsJimEMIwxMJBGcDPBOMVRv/irow083 OlvZam6aNPqc0cF4rNCY/KxE+AcFvMPJx9w8UAeggjqaXNecS/EG+t9BtdUe28Myw3l4ttb3 MevMbZPlcuZJTCAuNpAABySOmBmjbfFh7rUBZx2OiWsqiQvPe62IbWTa5T9xL5Tecpx1wuOQ RkUAep5oFJjB5owc8UAKaMcUhpQOKADt170tIOnNFAB3pcUClHrQAnajmlzmkHFAATSMSFPP agn3oPQnNAHJfCAr/wAK50lh3jkJ/GRia63Irz7wXJKnwSEkErRSDT7gq6cFCC+CD7cVg+E4 b3Sfhloer3j/AGSS4uNMeW7OqyzmaOSaPe0u8KE3b+VBI560AevHBH1pCyg8muA+KuqWWp+D 4dN0/UbiWLVb6Oza40oNPKkanzJdojDMTsjZeAcbhniuU0LTrHxF4n8IXt9Pqq3N5YXhv4jd zRB7m1aGIkoSCmG3nHHUZGaAPbOncYxTQwPf9K4L40ESWXh+2lNs0MurgTJdXzWkLqLadgHk UEgZUEcHkCue8Ca7Bp3iGwS/1e2ttPCarFBnUPMtG/eWbKkUj43hdzgcAjDDGBQB6/nHJpc4 rx74qeJQnijTdV0y61Sa08PwxX8kmnRPNb3CzSKHWRkBUAQJIw3YB8wEHFUJJ9KV3v8AQ9Wj PjOTxFdr5MV3vkmg+1SqyyoCW8pYAWGRxtQjtkA9wB4BHOaU9K8s/Z+h0AaDBJar4dOqvYQm dtOvfOmdCqktOmAUfd1HIz3r1MYI4oAMUhH59KUjg0lAGBrmh3D6kNb0SdLTVUj2Sbx+5u0H Kxy454JO1xkrluCCVNjw3rsGsRyxtDJZ6hbYW7sZuJYGPTOOCp5wwyD68GtjJrD8UaAurm3v bW4+w6tZtutLxUzj1jcAgvE3G5MjOAcggEAG134pegrk7LxXNpt3FpnjK2h0q6lfy7e8R82V 0ewRycxuf+eb4PZS3Wur+9jHOeRQBDf2ltf2k1pfW8VzbzKUlilUMrqeoINc03gi1t8N4f1n WdBYZwttdGaEccDyZg6ADJ+6F+tdWDTgfagDlWPjfTTwuka/AF5xvs7jj0++jscf9Mxk9h0e PGml24jXXbe98PyM2zOoRBYif+uyloufTfn25rpj972prqrKVdQwKlSCM5B6igBsTpKqyRMk isMqynII9QfSnY5z6Vz+j+DtE0XW/wC0tHWbT1ZGR7K2kMdoxJBL+SPlDfKORj3zUmqan4gs L+Rk8ODVNPyvltaXiC5GQM7o5NqYznkSZxjjOaANv0zz71iePrmex8Ea1eWsrwz29jNJE6Nh lYISCD9aNK8VaLqF39hFy9rfj/lzvImgn9yFcDcP9pcj3NZ/xhuVtPhj4hleOaUGxdNsQBYb xtB5IGBuBPtmgDq0GFwOARzSBBjA6Uls/mwRy+U0RdA3lvjcmRnacEjI6Hk1L/OgBoQBtwp3 4Cl79aQZxzQAfpTuaTFHNAAOKXtimkHdnPHpTsigBDS0nOaO9AC0UUDrQAZ9qO/Xmg0EHNAA cnrRRjtR37UAIRg1l3mjW914hstYnIka0t5oUiZAynzGiJbJ6EeVjj+8a1DSUAee69f6d4Z8 YX1w+tQ2z3flX1xGdDmuniQIId3mxnCKREfvdPmqrq1t4Th8V29xP4ovotUm1GHUUaJne2Uu BFGr7QY03xAxhmIZgcg9K1fE3gubxD4wub2XVdY0yybToLY/YLoRC5IecusgwSQA4xwPvn8K Gu+HtWhstf8ADWk6LHLY62Ikt7xWjWOxTyIoGDqSGJRY967Q2SQPlxQBe1K88O3fjHWNGOsu NT1Oxj0x4/s7lImVZpAPNxsLlJi2wkHCj1rl9fs/h+unJb2+pLZL9hu9AeS10mRzJMTEp3FF ++pj4U/e3nB9dZdB161+INreadY6lbwi7X7ZJ9ujbT7mEQbTMYc7xPkKv3SPlByR1n0Lw5rN loU9u9mwlk8UyX20yJ/x7m537+uPu846+2aAKn2XR59EWbxLq+i3OlaTdwzvbw6M1tGGeL5E eNmbcx86NgAuc4GCTgZ2n6f4fSTSB4e8SaALe6intdPttT0gzKqxyvKyKPMjKFA5UhsEhRxn k7ureH9Y/trUdWjspLpI9et9QitllQG5jW0jhYrk43K25huxkoOmQThax8OrnxnrEl9rVjda TbXdzcXSIkyCa1Pl2kSbsFhucQSEgbgA3JzQB6/SZNB96UjHQ0AHbGaO3rQTxR26ke9AB9aX jFIOaO3vQAUvNFBoAORRmkpe1ACYpH6U4ikbOKAOB8CXkmn/AAZTUIVR5LWyuZUDfdYqzkA/ UjFc94e8a+ItR8Ix3zTaZqh1GKCKLGnSxW9ncSzRxqkmSd6jzc8H/lmfUV1XwntYbv4WWVlc xeZBOlxFLGcgMhlkBBx6it2bw7pUnhmHw40DnT4II4IlEjB0EePLIYHIZSqkHOQQDQBwmp65 4u0iCTQYRp8VxBPE09/Y6a84jtZEmIkFuhLbvMiCd1wwPY41dC1zW9YC2kN7o/2yXSFuYb2C FpIjMZXRztLKQuFX5DypyCTitXUfDuhWejzXF3f3toLdvtdxqBvnSYlFYbpJM5ICllweADgD pUngjT9L/smx1S10O50yR4WVI7snzxG0jPmQbj8zE7znJyxzzmgDkNL1rxINE0u68SXGmail 9rRsWRLTCIqNOpIO7klokI9OevbC8X+M/GWj+F9L1eKLSrxPEUSLpFstsM2c8hRo05bDKYi2 TjAdR2OK9ZTw3pCwW9t9kJhtryS9hVpGOyZ2dmbk88yPweOfYVnr4E8OC6WeS2uJhGV+zxS3 Ujx2wWRZAIlLYjG5EOFxwoH3eKAK/gnxYviPWJ7eAIlpHpdrK8DACW2uHknWSGTB4K+WoK9j 7EV1wiXcX2qGIwWHU1laP4a0fSda1LWdPs0gvNTCfamQkBypYg7egPznJA5rZFAEaRxoSUjV CT1VcGpKBRQAmetIT6Uv1o/KgBKPSjNLQBDfWlrfWstpe28NzbSrskimQOjg9iDwRXJXHhHU dJgkk8F63cWDJjytPvnNxYn/AGQp+eNR2CMoHoRiuzooA4+28T63p6eV4m8L30Tp9+70xDd2 78cFVX98Oexj49eM1s6R4n8PavKYtN1e0mnUZeDzNs0f+9G2GX8QK1iAeCAc+tZ2t6Ho2tQr DrOlWWoohyouYFk2n2yOPwoA0eePfpQBXM/8IfaW2G0fVda0grjatvetJGoHYRS741H0UUs9 l40t2VrLxBpl9GAP3V9p5WQ/WSN1UE+0f4UAdL06E0nfiuZfVvF1oQ954Xs7mID5jp+pGR/w WSOMf+PVFZePNMcyDVNO1nQ9jYZ9SsXiiH/bQZQ/g1AHQ6pp9hqlnJZ6nZW17bSffhniV0b6 gjFc3q3gpZNMubTSNWvrOKaBo2tLiVrm1kBGNrJISyLjj92yVuaTr+g6xuOk61p99t+8Le4S Qr9QDxWl2zjIoAyPC83iCS0ki8R2VlDdxtjzbOQtDMPVQ3zKfUMPxNaa3EJuGthNGZlUO0YY bgpzgkdccHn2qT37Vk614a0DWJ0udT0q1uLlF2x3DIBNGO22QYZcHJGCOeetAGvkc9sHBo7V zA8O6xp6u+h+Kb5d33INSAvYVHHc7Zj36yHr0qCbWPGWjweZqfh611mJfvSaRMVlb/tjIMfl IaAOuPPFGea5fQvHOk6pcx2txaapotzMdsUOq2bW7SN/dXPDHnsT1FdQSM8kUAO4owKT2NBI HU4oAWkAOc0d6B1oAXp1opPalGKACjmijI96AA+9FGM80GgBBS7R1o/CgkUAB46UnrxSnmgU ANxWFeXd3H4+0qxWYi0l0y8kePjBkSW2Ct68B2H41vH61z2ugxeNPDdzuADrdWhHrvRZf/aF AHQYy1GMmloAJ6UAJgUCg0dKAFIFGeMUlFABS0lL3yRQAoxiigEUmD60AJ1pc0AcUUABPGe1 I33T6UE0j/dI70Acn8Hzn4e6bx0acfTEzjH6V0eq39lpdhLf6hcpbW0KlpJHPAH+PI46nIA5 Ncj8PNU03RvhhaahqF3Fb2qPcku38X7+U4UdS3H3RyewrTsYH8VrDqeq2dxb6dHIJbKxuF2t KVJ2zTJ1Bzgqh+7gMfmwEAI7TT73xLdW+qa7G0OnROJ7HTHUhtw+7LPzyw4ZU6IcE5YDb1WM DgUAUfjQAnpS96MUYoAMe9Ao70o4oASl9qBjHSjjHSgBDjpQKMUE0AFIOlBGQRnGR1pFGFC5 yR39aAHCjHfNJS54xQAD1FIcUDiigAH0o6n2oHNJjFAC4GfagEg8HFHHajjNAGdrGhaJrEez VtHsL5RyPtFukmPpuBxWfH4L8PQwJBZW91psKZKxWF9PbJnJOdsbgHr3FdCeho7CgDmm8N6t En+heNNdiwCFWVLaVe/XdFuPX1zUAsPHduP3XiPRLkZ4E+jup/FlnwPqF/wrrKMZFAHPtdeM UYY0XRJkwPmGpyIxP+75BA/OojrviGF2S48FX8pB4azvLeRTx/00eM/pXSjpQKAOeufFKWtt FPfaDr8CufuLYNcOv1EO/FY+ua74G1h7d9d0y+eS2YtbSXmh3cbQscZKu0Y2ngcgjoK7kj24 prKp4K5z60Aeape+BIpvMsfiPeaPJ0UTayX4H+xd7wv5Cp01k7g2l/F3w9eL6ahHbyluf70E kQ/Q13l7p9hewvDeWNrco33llhVwfwIrHbwN4MYfP4S0Fvrp0P8A8TQBnad4h1r7TbxzXPhK 9tmkVJbi31N42AJ5KxlHBPtv/HvXWpcQSfcmiY+zAjNc8fh94F2hR4O0BQDxjT4h/wCy0g+H /g1C3keH7O23dfIBi/8AQSKAFufGdpaTNFe6J4ihKnGU0uWdT77oQ4/rUQ+I/gkMEn1xbB84 K38Elpz/ANtVWppvBGhSDBfV0PrHrN2h/SUVWv8A4c+FtRhEGoxapfwBt3lXWr3UyZHfDyEU AbOk+JfD+qsV03XNMvGHVYLpHI/I1qq6t0Kke1cC/wAHPh2zlxoCoxx8y3EoPH/Aqcvwu0aL 5bTXPFVpHjiOHWplVfoM0Ad6eBmjJrP03S4bHQ49I+1X1zGkRiM89yzTsDnkyDDbueCCCO2K zD4N0wKBHqHiKMjuNdu2/wDQpDQB0fHcUdBmuc/4RcowaHxJ4ijOMHN75gP13q1O/wCEdvgu B4u17rnJFsf5wmgDoSR6ijtz9a50+HdVwAvjbxAoA/55WZ/nb1p6NY3VhFIl1rN9qhYgq90k KsnsPKjQfmDQBeNc/wCLspqvhicZ2x6sQ5PQBrW4Qf8AjzLWxqMFxcQBbW7a0lDAiVUVzjuu GGOa43xvYeJLfSoLj/hIYp9uoWSwiSwX5JGuoUDEqw3ABmBXjIPUUAd2Rg9OaDya5sWHjXnd 4m0on/sDtj/0fR9i8a5z/wAJDobD0fRpP6XFAHR9qWkFAFAAelKOlJxgjigDjOaAFNJR7UoF ABz0xRil6Ck60ABpTyMUmOaWgBtY3iHUNaspUj0rw/JqoZRuKXUcRU5ORhuuMA9e/tW0frWX 4p1ZNC0C81VofPe3jJihDYMsh4RAcHlmIHTvQB5P4CtNbuvDXhzUbzwpe6lDpqyTWkEF7AkX nNMzecdz8kDAXpjLdd1eiQ+IfERtfOk8C6rv37fLS8tGbHqSZQPyNQ/Dua+shN4YvtFttM/s +CKaAW1w0sZjlZ8DLDIYMj5yeeCK64gdzQBzcniLWkCZ8Da45YZIS4szt9jmcfpUf/CTa3kD /hAfEWSSOJ7Lge/+kV1PbikAxQBzA8S6xuIPgLxF1wP31l/8kUr+JdWWQp/wgfiM4xz5llg5 /wC3iumHJ60GgDmf+En1Xj/ihPEuMdd1nx/5HpjeLNSDbT4F8T+xxa4/9H11PH41neJ9SfRv Dmp6skQmaytJbgJu27yiFgM84HH60Ac8PHqHU5tMHhTxKby3jSWWMW0fCOWCsD5mCCUYcehq 0PGDkAnwn4nDHt9iXjjP9+uet/GBg+JNzHPpkOnW0sNpbSX900wSXMbyqivs8pSGlIwxBYt1 4Ar0igDlI/GyOxX/AIRXxWMDJJ0tsfzpD47tASD4c8WcHHGiTn+S11tGOKAOUHjqwxltE8UA AZP/ABJLjj/x2l/4TnTNuTpPicD1/sC7/wDjddT9KDQByv8AwnWkbQ39neJcHp/xT97z/wCQ qjuPiH4dtWUXMeuQb3EamTQrxdzE4VRmLkk9q6TVHu0064awihlu1jYwpM5RGfHAYgEgZ9AT Xlui+PL7xZbJp0ejaRcasuqYggi1JmRY4Rv+1NhQ2zdsCggbt4I4oA7M+O9CAB+z6/z0/wCJ Be+v/XKom+IfhxWwya2OO+h3mR9f3Va/hDVpdb0KO9ubX7JdCSSC5gD7xHLG7RuobA3AMpwc cjBrVwBg0AcqvxA8OPHuUayQRu/5Al5n/wBFU9vHvh4JuP8Aa+3uRot5x9f3VdR3pCBQBzUH jvw5NJsSXUt2MkHSboYH4x0v/Cd+GOhvp1x13WM64+uU4/GukPXHFLQBzLePfCiqS2qhADgk wSf/ABNNi+IXgx5TGPEFoGUgMG3DbnpuyOPx9vWmfErxY3hjRZJdPshqmprC9ytoJNu2CPmW Vjg4VRx05YqoyTiqWteJLjR/HEVilpBBpt1HbzXN9LBNIpLu0YXegKR4CjlyBlxQBoT/ABE8 EQnMniXT19/M4/OhfiH4GZd3/CVaUozjL3AUfma6hMEA5zSkA9aAOYHxC8DZwPF2h5wf+X2P H55p6eP/AAK5IXxloB/7iEQ/9mrowqkfdH5UgVOmwflQBzw8e+BiSB4y8PnGM/8AExi/+Kp5 8c+CQCf+Ew0DjrnUYv8A4qt0xRnqiH/gIpGihc4eGNh9KAMJPHPglvu+MPD5+moxf/FU4eNv B7fd8VaG3OONQi/+KrXls7OUfvbO3kx/ejB/pXnC+LNDuPEF/BNovhttL02a6hn3zobtBBGW kkEJXldysu3OcYboRQB2ieL/AAo5+XxLox+l7Gf61PD4i8PSpvi17S3Hfbdof61w/g+wS2/s bSde8D6DZW91aN9mMaiWSF41U+TKWX5nKbjuB6xkV2Y8K+GSvPh3SeeSPscf+FAFr+29GJwu rWBOM4+0pnH51JHqmmuwVdRtMnpiZTn9az/+ER8LZyfDWjt9bGP/AOJoHg/wkOf+EW0P1/5B 8X/xNAGsLq1bO26gbHX94OKcs0LYKzRn/gYrGfwb4Qc5bwpoRPvp8X/xNQnwH4Jz/wAihoH/ AILov/iaAN8zRggCRCSM8NSiQdiDmueHgHwMF2nwb4fI/wCwdF/8TQPAXgfOf+EP0D8NPi/+ JoA6Len98UBlz1H51zqeA/BaNuXwroqk+llH/hT18FeE0TZF4e02MdSEt1A/QUAdBuFAOelY h8J+HiMHSrfHHG3A/KopvBnhyYkvYy8jkJdTIPyVh6CgDoCa5b4qvqEXgPUbrS44JLq0Ed2i zZ24ikWQ9O/yk0+TwR4dKkCHUEAHAi1S6T2/hkFcrPpvgzVmutC0nXtctNVkSa3tpn1TUDEZ lVg2x2k2SlCCWVSehoA9OX7o3EE45I6Utee6TYeCdS1H+z7XVvEAuMN5IfWtQjFwq8M0TNIF lA7mMsBkHOMVtjwRoytkXniIe39v3v8A8doA6elzRgdaO/AoARhR14pT0pOgoAUdKXtTc9TS g5oAXPFByMUgpW6jmgA69KXtSDHrzSmgBPpVLXNNttZ0m50u83+RcJtZo22up7Mp7MDyD2IF XT19KAMdSKAMbw7oT6Zc3N7d6nc6nfXKpHJPOiJiNNxRFVFVQAXc9MksfYDaPSikHBzmgAoO cUtJ3oAUdKKT6UD3oADjjiq2r2MOp6TeabcFhDdwPBIVPzBWUqce+Cate9AoA5LXfBEGsMbe +1nU30p2heTTgyeWxiA2gNt3quVViAeSM8ZIrrB1570v5GigBOc5FGaM/Wg0AIeKD0rhfEXx ETSNR1iOfRpZLHR5I4rq5juog5LxrJlYiQzYVx05J4APOK0fxU0hLiX7XayQWiSXcYlFxFI+ bdZGctErb0BET4yOuBxuFAHd6hbtdWU1slzNbNKhQTRY3xkjhlyCMjqMgiuTXwBAdbPiJ9c1 F9f2rGL4JCoEQBHl+Xs2FTnJyCcgYIxVWX4imC0gnu/Dt7bNfRxTabG80eblXmiiGTnEbAzR EqegbrkECrefFjT7bXP7Am0x4NVSQpNHc3cMMUY8sOG80sVO4MuF6+oFAHb6BpVvoumCxt3k kUSSSvJKcvK8js7ux9SzE8YHOAAABV/PHTPtWRpetNeapPpc1i9reQWlvdSKzh1AlaVQoI64 MRz65FVbjxTaRaR4h1EwTiLQmmSZeNzmOJZDt554bAzigDoR796dxXm+mfE43XhgeITpNkLN 3gSJo9WifDyuoVZjjERAYM3Jx0x6dP4N8TReIo74C2FvNZT+TKqTpOhJUMCroSDwenBHcDIy AdBgUhPpXK+OPGlv4Z1GwsZIbVnvI5ZBJdX6Wsaqm3I3N1YlhgfWrHg3xXa+J0eS1s7m3j+y 210rTYBZZkLKMAnBAHNAEni3wloHim0mg1jTbWeWS3aBLkwI00KnPKMwOCCcj3pmreFYdRxb nUr620x4VguNNgMa280a5wCCpZcglTsK5UAe9NvPFcFt42tPDTWVy/nxbzdpgxpIwdkjPOcl YZT7bR/erntP+Jssvhpde1Dw3LYWtzZXF3p5F2souDCjOYm4Gx2VGYZyMBskEYIB6Lk9yT7m lJrmPBXiDUPEAkuJLPShZKNq3Gn6qLxDIMZRsIu0gEHv2pfiJ4sXwjo0N6mlXWq3VxcLb29p bnDyuQzYBweiqx6dqAOl5PegfSuIvviPpVtetDFbXE8L6H/bFvcLwkwKyOIhn7rlImYZ7Bv7 vKW3xAN99gn0zRjcWcsdo13NLeRw+Q9wqukSBv8AWuFdWIyOCMbicUAdz39aU8EmudPiiAeA 7nxZ9jn8m3s5ro27EByIw2VzyMnbTvBOvXXiCxe8mt9LW3BCxS6fqYvEcj7ylgigEcevWgDf PTArkrnwFpd1qHnXV5eT6eJ5rpdMcp5AmmV1kbO3zMESyHbuxucn0AZ8RPF9x4cawtLJdMju LvzJGudUufs9rbxRlQWd+TktIiqoHJbOeDnT8B65L4i8MwapNFbJI0ksTG2lMsMhjkZN8bkD cjbdwOOhoAj0Twsun31rd3Os6lqrWcBhtBeGM+SGABOURSzbVVdzZOM+rZ6IdaSloADmjHFJ +NO9qAExQetLTSGyMYx3oAU4NIT1p38NHvgUAJ+Zo4zig0dKAA0lB5pRyOmOaAGkZBzXnlt4 Kvm8X2l7NbrZ6bZX1xeQJFq806yF1dABCyBYid+47SQDkAfMSPRSOKTnuc0AcLoHhfXftvhp NVTTre28NxMkMtu7O94fJaEHBRfKXadxXLc4Gflye5xzSjjgceuKAeaAAc9KAKP0o554oAKW mj3paADr14ox2opeaAA0D3FFANAC4puKcKXIxQAynCikNAC0v86Sk+tAC9KTilPSkx60AKKD 0pMfjS9qACjtSGgH1oABS9KQnuAaRZEchUZWPsaAF4pKKMgCgDn7LwppUHiHVdcntba5u725 jnR3gBeEJCkYCt9VLduWrBn+GmnPGyrchDPBqFteSLAA88N07PtDZ+VkbbhueARjnjvaDz9O 9AHntz8PLzVbeyt/EGuW2oxWMMNtAosNgaJZ4ZX80bzvZ1gRONoHzHHOK19V8JK02lyaE+m6 YNOM22CTT/OhfzAM/Krpg5Gc57mur6CkYgAk8YoA4+TQfFSa8+s2mu6QlzcWNva3Qm0uSRGa JpWDoBOpUHzTwS3TrVLVPCHiC4t/ENha65pdvp+uGRp1bTHeWMyQrE21vOA/hyMqcZ713np7 0cDP50AcFpXgfVYdC07QL7VtLn02xa1ZVt9NaJ5GgZCpYtKwOQmDx3z6iug8G+GoPDMWo29n MWtbu+kvIovLCiDzMZjGDyAQcfXHOK3FIJPTjrzS9aAOb8T+HLvVNc0/WLK+sre5sYZokW7s jcIRJtycLIhBAXHXGCax/DngnW/DUXl6B4hsUWS3him+2aW0u5owRuTZMm0fNjbzgAcnv3ox 2FJ05zQBxuoeAre91a51U6zfpdT6jb6gNuPKRoVRVTZ3BVSOv8WeMVmWvw2ux4ai8PX/AIhW 7sbSzuLawWOy8oxNLG8fmuS7byFkcADaPmOecY9GByMkd+9Bx2oAxvD9lrlk7pqeo6ZdwYAi W009rYqfU5lcH8hVPxb4Rh8R6tpl9canqFmLBJhGLOURtvkCjeWIPRQwAA/izngV0q8//Xoz QB5tL8J7WTwndaBJrdzJus4bS0uWiAeBYpJ2QnBG75JzGemQCercTXPwxjm0yHSf7UhOnvb2 kV4klkHd3t0VFlifcPKYooU5D4A4xyT6IenFA6UAcRD4O1yPw1eeF28RWMmj3FtcWwzpji4V ZFYA7/O2kqWH8Azg9M5rQntvF+n+FtWEF7pV5qS27HTlttPMA8wK21XDzMGyQo6rjnrnjp/r igEH0zQB59rmieKtV8a6lqFrFpMdlFZwWKR6jbtNHdKSZJHXa424ZlXByG29VIrqvBehJ4a8 MWmjRzRyiAuSY4yiAs7OQqknaoLEAZJwBkmtke9BzQAUfjQelIevNABS9etGT0oFAC4FFIxw M0o5+tAAfSjNDZJo96ACkOc+1LSde1AAMUtGKKAENFKaSgBDzQeOgIpc+lKRQA2ihelFACEe tLmj2NHA60AKKOaB7UlAC0g96KOwoAUUvrTTRnNACg0tJS0AFHXtRRQAUUUUAIOlLSd6Xvig A49KKUgg0lAHH/GTWZNA+GWu6pC5SZLby4iOzyMI1P4Fga474eaTP4S8NaBaXegJomr6nqUF tcSWV0rSXMUMLzGSXIbOdsgZVwfm4avUdf0bTdd019N1e0S8tJGVnickK20gjOD6gH8KNS0u yvZre6mjAurQObWfqYCylWYA8E4PcGgDzK0+MlxcW11fr4RlXTfsEl7YXDX6g3YWVYQuzblM yOBzz3xitPWPiVfQtLBo3haXVbn+2n0m3iF4sRmaONmkkGV4VSpU5+uateE/hbo+i2+q21+1 tqaanDHBOiWMdtF5aFiPkQAbiWzu65A6YrodK8J+HdK/s86fpcMP9mmY2hBYmJpTmQjJ6nkZ PYkUAYPgz4hf8JR4x1PRrTRJ49PsjIkeoiXzEldHCMrKF/dnOSoY5ZRnGKw/j9ayTpp7NNcT rJBcW1np1tcSRSzXzhRDIuwjdtw5JPyqMn2PoGjeHNH0jULu/wBNtWt5bxi8wWZ/LZmOSwjJ 2qSeSQBmqPinwP4X8UX0V7rumfa7iKPyo3M8i7FySQArADOefXjPSgCLSrTU7X4ZWlnrGpXV jqEGloLu6gdWljdYxvIZgwJyD83PrXnsk97p3wp8FXutX2rz6FKv2zXbq2nlNztljaSPLq3m bBI4zg54XtxXp8HhHw9bx6lHFpyquqWyWt4PNc+ZEkZjVeTxhTjIwe555qe88O6NeWdhZXNj HJaae6PbW7ZMalFITK9GwDwDnkA9QDQBifB19Rl+H1hJqIvcs0ptzetun+z+Y3keYe7eXs5+ lZP7Qt0Yvh+dPjS6km1S+trOKO1P71yZQ5C+5VGFdudIsf7dGueU328W32US+Y2BHuLY2525 yTzjPvSarpGn6rLYy30AlawuRdWxLEbJQrKG4PPDtwePyoA8i8CX+p+D9ea0i8N60un+ILpF 0vTJJy8lokSKJp23sSoLOCRnjb05Geo/4WlD9n1S6/sC9itYdPnv9MuLhxHHqSQ43BO6Z3Jg sOQ2a7iXTrOXVIdTeLN3BDJBHICflR2RmGM45MaflXL6t8NfD13pNzp9pFJai58uNmaeWQJA JUkeGNWfESvtAwmAOOOAKAKOnfE5F0HXr7xBoc+i3mjPGJbR7hZGkEqqYvmA2qWLAYP3epx2 pJ4kbxP4h8FamlvNZWsMeoX93DKQfL8tBCG3Dh1zKxDKSCORkV1sfgjwzH4evdATS0GnXrbr iIyMS7cYYuTuyNq4OeMDGKe/hDQniKT29xcM1lJYmSa8leQwSMGdSxbOSQPm68AZxxQBwPgL xlaeGtD8IeHJbO5vr7V4EvZ3jwPKFzIzhiOr/MzcLnAXJwK7rwp4qXxHqGr21pp1zFa6dcfZ 1vWAMVy4LK4Q99pXn6ipV8H6FHc6dcwW01vLp9slpAYLmSP9wnKxuFYeYoIzhs/qaveHdF03 QdKi0vSbbyLSHcUQuzkFmLMdzEk5ZieaAPNdF8M6P47vvEWseMBLqMtpq9zYwW5unjhs4oTh QqqwwxB3lv8Aa+tVvD/j/UNA8FaTa22l6j4qnkivpbaUTKHNrbzFY5JGbqCjJz1OB1JruvEH w+8Ja5qcuo6lpZa4mCrOYrmWJZwOgkVGAfsPmB4FV9a+Hmhax4gj1LUFcwQWEdlbW0EssAhQ M5YZjcZDAqNpGML70AUb34qaDa33hqzEFzNLrkNvKAg/491n4Qtnk8g8AdATwKJ/ibbRHVFj 8P6vcNZ6gNNtgkJJvpwXDrFj+6I2JJ4GOvNbdx4K0CTWtM1eGGeyutOiW3hNpO8KtCpysThS NyA4479DkcVNd+EdAudKj02S1lSGG7kvYmiuZY5EmdnZnEisGBJkfv0bHSgDmh8Q5dQn8HnR 9MupIdcvbiOfzUCtFDDvRyQSMYfa2fRWGMkVXsvibZ2Xh+C+kt9X1Zrhri8cR2oJtbQTuFkf YMBAqnBPLBa7LR/C2iaV/Zy6fZCFdNtpba1G9m2JIUZ+pOWJReTk9fWs6++Hvhe6s7Sza2uo ra2s1sfJhvZY1mt1ziKXa37xeT97JOTzycgEdt8QdMuPGKeHIbK+kMkvlJeLETbtJ9nE4QP0 3bMn9a7HNYVv4T0S31SLUoLVkuIruW8UiViPNkj8tmwTj7gwB0HbFbuMCgBeMetJ3pAcZooA OlKMdaCelGOOhoAXmjrR7UY55oAOKMcdaKO31oABQfUUUUAFIaXj2oHTNAAOlFFAoAMYpMml PAHvSDNAH//Z --part1_39f.a8769.316da0c4_rel_boundary-- --part1_39f.a8769.316da0c4_boundary--