Heat rejected by the engine must be transported to the radiator for cooling.

The rate of heat transport is

$$Q = m*Cp*dT$$

Where:

m = the mass flow rate in #/min

Cp = the heat capacity in Btu/#/deg_F

dT = the temperature rise of the fluid between the inlet to the block and the exit of the block

For an engine generating 100 horsepower,

$$Q = 100 \text{hp*}(42.44498 \text{ Btu/min/hp})*(.17/.28) = 2577 \text{ Btu/min}$$

So, for Glycol coolant with Cp of 0.87, density of 8.47 #/gallon,

Flow (gpm)*dT(deg_F) = $(2577 \text{ Btu/min})/(0.87 \text{ Btu/#/deg_F})/(8.47 \text{#/gal}) = 349.7 \text{ gal/min}$

So, for $dT = 10 \text{ deg_f}$, you need 349/10 = 35 gal/min flow rate. (for 100 hp engine power)

For the air side,

From the preceding page,

Q = 2577 Btu/min Cpair = 0.24 Btu/#/deg_F Density of air = 0.07 #/ft^3

Flow (ft3)*dT(deg_F) = $(2577 \text{ Btu/min})/(0..24 \text{ Btu/#/deg_F})/(0.07#/\text{ft3}) = 153392 \text{ ft3/min, so}$

For 10deg rise in air temperature, flow = 15,392 ft3/min

